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I. INTRODUCTION

Present indications are that meteorological satellite technology is

on the threshold of an advance comparable to the first Tiros and Nimbus

flights. This advance will be accomplished in early 1967 by means of a

spin scan camera to be flown on the first launch of the Applications

Technology Satellite (ATS-B). This camera will permit continuous daytime

observaLioLi of .......u_uuu cover t_ _^ _ ....A ¢_ _= {_=_ r_m_ Tt is

expected that the continuous monitoring of cloud motions can be accomplished

from synchronous altitude with a picture resolution varying from 2.7 to 7

nautical miles.

The purpose of this study is to indicate a means by which this new

technique can be exploited on a quick reaction basis by means of the use

of existing synchronous satellite technology. The study reported herein

will lead to the definitization of a Technological and Management Plan

which will permit the launch of a prototype meteorological satellite

approximately 18 months after program approval.

The study indicates the preferred method of carrying out the above

objective. The method chosen leans heavily on the use of existing space-

craft technology as evidenced by the HS-303A (Intelsat II) as a means of

minimizing development costs. It should be understood that this is not

the only means by which this proposed program can be implemented, but

rather one of several possible approaches.

The tradeoffs mentioned in the study have been evaluated and the

most reasonable decisions reached, based on the information available at

the time of the study. The conclusions reached in evaluating and deciding

on the several tradeoffs have led to a system definition which is feasible.

It is the preferred system, not the only one which is feasible, but one

sufficiently defined to give high confidence that it can be achieved within

the constraints of the program.
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II. OBJECTIVES AND CONSTRAINTS

A. Objectives

The SOMS has two objectives: I) to provide a synchronous satellite

which can obtain daytime cloud cover pictures of the portion of the earth

within its field of view on a continuing basis; 2) provide a communication

and data dissemination capability for meteorological purposes.

The cloud cover pictures are to be obtained by means of a spin scan

camera. The camera will require a period of 20 minutes of scan time. A

new picture can be initiated every 22 minutes. Thus, it is possible to

examine cloud cover approximately three times every hour. From synchronous

altitude, the cameras will have a 16° field of view, covering latitudes

from 57.4 ° N to 57.4 ° S and a total longitude of approximately 115 ° at the

equator. Picture resolution will vary from 2.7 nautical miles at the sub-

satellite point to approximately 7.0 nautical miles at a zenith angle of

65.4 ° .

The communication and data dissemination objective is to provide a

means for disseminating the prime pictures directly to all regional centers.

The communications link also provides a means for two-way transmission of

information between regional centers as well as the means by which processed

meteorological data can be transmitted to a number of small ground stations

in the field of view of the spacecraft.



B. Constraints

In planning the SOMS system, cost and schedule considerations were

prime factors imposed on the design study. For this reason, spacecraft

redesign was kept to a minimum and emphasis was placed on providing low cost

ground stations for the world, regional and forecast centers. The other

basic constraint is the quick-reaction schedule requirement, which calls

for a launch 18 months after program go-ahead.

As a result of the above basic constraints, it was necessary to

utilize state-of-the-art hardware wherever possiDie, with no deviatioL]s from

the philosophy being permitted unless a clear technical advantage was thereby

obtained. It was, therefore, made a requirement that the existing technology

developed in previous synchronous satellite launches be utilized wherever

possible to carry out this mission. A final mandatory requirement was that

the Delta be used as the launch vehicle for this program.

In choosing the operating frequencies for the program, it was

anticipated that there would be an allocation problem if either standard

R & D command-telemetry or commercial communications frequencies were

selected. Therefore, the choice of frequencies was limited to those which

presently appear available for use as operational meteorological frequencies.

Limitation of possible frequencies to the above ruled out compatibility

with APT (automatic picture transmission) ground stations. Since APT

compatibility was not a requirement for the program, this limitation was

accepted for the present study.

The requirement that proven spin scanners be used for this program

limits the SOMS to obtaining daytime pictures only. Thus, there are no

plans to obtain any night-time earth images.

A final constraint placed on the system capability is that the space-

craft batteries are not of sufficient capacity to permit camera or communica-

tions operations when the spacecraft is in eclipse. Since the eclipse season

for a synchronous satellite only occurs twice a year (reaching a maximum of

approximately 70 minutes a day during a 40 day period for each eclipse

season), it was believed that this loss of operations through the eclipse

period was not serious.
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III. SYSTEMCONFIGURATION

The solution to the problem of providing continuous cloud cover
pictures from synchronous orbit will be demonstrated if the ATS-B launch
is successful and the camera operates as predicted. However, the implemen-
tation of this camera system in an operational synchronous meteorological
satellite requires that certain ground rules be established and the necessary
system tradeoffs made. The ground rules are generally covered by the objec-
tives and constraints outlined previously; the decisions maderelative to
system tradeoffs and added to these ground rules led to the final recommended
system contained in this study.

Broken into its simplest elements, the SOMScould utilize an HS-303A
spacecraft with redundant spin scan camerasadded. The basic technical
elements which must be added to the HS-303Aspacecraft are the cameras and
a meteorological data transmission system. The camera addition must be done
in any event; the communications system could be accepted with no improve-
ments. However, this seriously limits the meteorological communications
compatibility. In order to provide multiple access, an improved communica-
tions system utilizing Time Division Multiplex (TDM)is recommended.
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A. Spin Scan Imaging

Two spin scanning devices were added to the basic HS-303A spacecraft

structure. The intent, similar to ATS-B, is that the east-west scan be

accomplished by the nominal satellite spin of i00 revolutions per minute

and that the north-south scan be accomplished by a vertical indexing

technique - i.e., the optical axis of the telescope is tilted from +8.0 °

to -8.0 ° in 2000 discrete steps during the period required to take one

cture. _ne tuLax scan L,.-= LUL one cture xo =v ........

picture can be taken approximately every 22 minutes (including 2 minutes

to reposition the optical system). The indexing arrangement allows earth

coverage from 57.4 ° North latitude to 57.4 ° South latitude snd approximately

the same in the east-west direction. The completed picture comprises a

2000 line raster. Resolution from synchronous altitude is calculated to

be 2.71 nautical miles at the spacecraft subsatellite point and 6.95

nautical miles at a zenith angle of 65.4 °. It is not anticipated that

useful meteorological data can be obtained at greater zenith angles than

65.4 ° .

The nature of the spin scan method of imaging leads to the fact

that actual scanning is done only 5% of the time, since the camera is

pointed to the earth for only _at 2ortion of the total spin timr during each

revolution.

As described previously, the scanner generates a line of video infor-

mation each time its optical axis sweeps past the earth due to the rotation

of the spacecraft. However, in order to utilize the video data at a

ground station and construct a picture, a reference signal must be

prov_a_ so that the consecutive lines of video can be properly oriented

with respect to each other. Time displacement between consecutive Lines

will result in geometrical distortion of the reproduced image, unless kept

within tolerable boundary limits (i.e., less than one-half a resolution

element).

One of the basic problems is thus to precisely determine the

satellite spin speed and then time the initiation of each horizontal scan

line. Sun pulses are used for the timing reference, md are generated

from a solar sensor provided within the satellite. Rowever, a characteristic

phase jitter is associated with these sun pulses. Unfortunately, precise

determination of spin speed cannot be accomplished easily due to the noisy

nature of this sun sensor signal. Sun signal noise gives rise to both an

inaccurate position reference and an incorrect spin speed indication if



used on a rotation-to-rotation basis. The sun sensor signal must therefore
be considered over a long averaging period before results of sufficient
accuracy can be achieved. This averaging process is accomplished in a
phase locked loop system.

Whensynchronization is achieved, the synchronizer generates a
constant numberof clock pulses for any satellite spin rate and each clock
pulse is used to increment the recording beamin the ground station
photofax recorder, one resolution element at a time. The synchronization
system also includes a control which initially provides the required time
delav between the _,n p,,l_ _n_ 1_n= =y_ .,11se' since this _"+..... i _
a function of the time of day at which the camera is turned on. This

initial time delay is manually set into the system. A time-of-day correc-

tion clock then continually adjusts for the constant and precisely defined

shift in angle between the local vertical and the earth-sun line once the

initial time delay has been established.

The line sync pulses, resolution element clock pulses, and frame

start data are then fed to a photofax recorder for production of a pic-

torial image. In addition, the video and sun pulse signals are tape

recorded so that the data are available for future processing.
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B. Communications and Data Transmission

It is necessary to transmit the spin scan camera picture information

plus the communications signals being relayed by the spacecraft to the

ground stations.

The proposed system provides for one I00 WPM teletype channel and

13 simplex, 3.85 kHz data channels which can be used for the transmission
_f °_., _ nf _,_ norms]Iv transmitted over a telenhone line. The 13

data channels can he used simultaneously by 13 transmitting stations, each

station using one channel. A larger number of stations can be accommodated

if they can tolerate waiting for an open channel in the event all channels

are in use at the time. If fewer than 13 stations use the system, then

more than one channel can be assigned to some stations when traffic density

requires it. Any number of stations can operate in a "receive only" mode

and will be able to synchronize with the transmission to allow the extraction

of any channel(s). The transmission is in "near real time" with an additional

delay introduced that should not be apparent to the user even in the case of

two-way telephone conversation. In addition to the 13 data channels, a

I00 word per minute teletype channel will be provided for broadcast to small

economical stations equipped to receive this channel only. O_ course, all

other stations will also be able to receive this teletype channel in

addition to the 13 data channels. It is also feasible to supply several

teletype channels along with each of the data channels. It can be used

simultaneously for both data and teletype but can only be received by those

stations equipped to receive the data channels. The transmission of the

spin scan camera output to the ground station will be in real time so that

only approximately 5% of the time will be used in transmittin[ these data.

It is necessary on the ground, however, that this transmission be accurately

synchronized with spacecraft rotation so that adjacent lines of the image

register properly. To accomplish this synchronization, the output of the
sun sensor is transmitted down to the receiving station during the 95%

of the time when no scanner signal is present. The receiving station

develops the required sync signals _rom the sun sensor signals.

After receipt of a picture at the master station, it can be sent via

facsimile to a small station having fax facilities.

The spin scan camera signal and the relayed data signals are limited

separately and amplified in the same travelling wave tubes and transmitted

to the ground stations. Figure 1 shows a simplified block diagram of the

communications transponder. The communications signals and the command

signals are received on a common antenna, converted to I.F. in two separate



mixers and amplified in two separate I.F. amplifiers. The command signals

are decoded and fed to the logic equipment to perform the required commands.

The communications signals are amplified, limited and filtered after which

they are added to the beacon, scanner, and sun pulse signals. The resultant

of the combined signals is up-converted, amplified in the travelling wave

tubes and transmitted to the ground stations. Figure 2 shows the spectrum
on the up and down links.
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The Communications System

ATDM (time division multiplex) system has been chosen for communication.

It allows a number Cup to 13 in the proposed system) of ground stations to

send their signals through the spacecraft transponder at one time without

interference with each other and without imposing difficult power control

requirements on the transmitting stations. Any signals that can be

accommodated on a normal 3.85 kHz telephone llne can be sent over any one

of the 13 data channels provided. Any properly equipped receiving station

can receive all channels and demultiplex them to extract the desired in-

formation in one or more channels.

In addition to the thirteen data channels, a narrow band I00 WPM

teletype channel is provided. This can be received by a small inexpensive

ground station as well as by all other stations in the system. It has been

assumed in this study that the standard seven unit Baudot teletype code

will be used. This code consists of a start, a five unit character code, and

a stop pulse. At a printing speed of I00 WPM it requires i00 milliseconds

to send one character which consists of seven units. To simplify the

synchronization of the teleprinters at the small receiving station, a

frame rate of i0 per second (i00 millisecond period) has been chosen.

At the transmitting station the teletype signal to be transmitted is fed

to a special digital data modem. This modem separates the five unit character

code from the start and stop pulses. The five unit code is then formatted

for transmission in the assigned time slot within the frame.

At the small receiving station the five unit character code is received

and fed into a different special digital data modem wherein start and stop

pulses are inserted and the resulting signal is put into the standard i00

WPM Baudot format.

Figure 3 shows the make-up of a typical frame. The frame rate of i0

per second has been chosen to simplify the synchronization for the small

receiving station. The inout analo_ data channel is sampled at a 7.7

kHz rate yielding a baseband bandwidth of 3.85 kHz. The sample is encoded into

a 7 bit code. In the period of one irame, therefore, the analog data

signal will be sampled 770 times and these 770 samples must be transmitted

during the time allotted for a single channel in a frame. Utilizing the

seven bit code requires the transmission of 5390 bits in this period. There

has also been provided 21 additional bits per data channel which may be used

for TTY, low speed data, or any order wire function. Since it is not

possible for a transmitting station to position its transmission exactly

in the time period assigned to it, a guard time equivalent to 34 bits is



allowed between each channel. As will be shown later, this is equivalent

to almost 43 microseconds or 13 kilometers of range to the satellite. It

is necessary for the receiving station to acquire the carrier from a

particular station at the beginning of its transmission, synchronize its

bit clock, and detect the beginning of the information bit stream. Some 255 bits

per channel are reserved for these functions. The bit requirements of

each data channel are summarized in Table i.

TABLE 1 - Bit Requirement per Data Channel

Information (770 samples @ 7 bits/sample)

Order Wire, etc.

Carrier acquisition, bit and channel synchronization

Guard

Total

5390 bits

21 bits

255 bits

34 bits

5700 bits

The bit-rate required for this system based on the above allocations
is 7.98 x 105 bits/second.

The teletype channel requires no acquisition or synchronization

allowance and there is no necessity for a guard space ahead of the frame

sync (it is tacitly assumed that the TTY signal is generated by the

master station). Therefore, a time equivalent to 5445 bits or 6.82

milliseconds is assigned to this channel.

The bit rate and the frame rate are derived by the master station

from a stable 800 kHz source. At the beginning of each frame the master

station transmits a suitable sequence to allow each station in the system

to synchronize the bit rate generators and to identify the channels

in the frame. A period of 255 bits is allowed for this function.

The frame synchronization signal (255 bits), the teletype channel

(5445 bits), 13 channels at 5666 bits each (73,658 bits), and 13 guard

spaces of 34 bits each (442 bits) account for all 79,800 bits per frame

that are available.
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Figure 4 shows how a transmitting station fits its transmission into

the frame and how the receiving station extracts it. The analog signal

is sampled at a 7.7 kHz rate and each sample is coded into a 7 bit digital

word. The digital signal is read into a storage device at a 53.9 kHz bit

rate and when ordered by the synchronizing signal, 770 of these digital

words are read out of the storage at a 798 kHz bit rate for transmission

through the assigned time slot. A storage capacity of 770 words is required

for the signal to be transmitted in one frame by one station..A 1024 word

storage device would, therefore, provide a comfortable margin in capacity.

A similar storage device is required at the receiving station but in this

case the signal is read into the storage at a 798 kHz bit rate and read out

at a 53.9 kHz bit rate. The signal is then converted from a digital to

analog form. As can be seen from Figure 4 the signal is subject to a

delay equal to the period of one frame or i00 milliseconds in addition to

the propagation delay.

To fit its signal into the proper time in the frame it is necessary

for the transmitting station to have prior knowledge of the range to the

satellite. With this information the propagation delay to the satellite

can be taken into account in determining the proper time for the trans-

mission of the signal from the ground. The transmitting station will first

transmit only the 255 bit synchronizing signal at such a time so that it

will appear in the center of the time slot assigned. The time is gradually

advanced until this signal appears at the beginning of the assigned time
slot at which time the information bit stream can be transmitted.
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C. CommunicationsSummary

The system implemented per the above for SOMS makes available at

least 13 simplex 3.85 kHz data channels on a full-time basis. The llnk

is sized to operate with a margin of 3.09 db above the R.F. threshold of

approximately 9.3 db. The teletype channel has a margin of 4 db above a

7 db R.F. threshold. The scanner channel has a basebandwidth of 60 kHz,

with an output signal-to-noise ratio of at least 30 db video (peak to peak)

to rms noise, and operates with a 3.8 db margin above an R.F. threshold of
7 db_

The frequencies chosen for the SOMS were placed in the 7200-7250

MHz band for ground-to-spacecraft and in the 1690-1700 MHz band for

spacecraft-to-ground. For operational simplification, both command and

telemetry functions are within the above bandwidths. The frequency choices

used for this study are given below:

Ground to spacecraft 7233.48 MHz

Command 7225 MHz

Spacecraft to ground (voice-type

communications) 1695 MHz

Spacecraft to ground (teletype-

only channel) 1693.6 MHz

Spacecraft to ground (scanner) 1697 MHz

Beacon 1691 MHz

Based on the above design objectives and frequency choices, the

following spacecraft-to-ground communications parameters were chosen:

12 watts of transmitter power and transmitting antenna gain of at least

4.5 db over any angle 6° or less from the maximum. This required space-

craft antenna gain is the same as that of the existing HS-303A antenna.

The corresponding ground station requirements for the master and hub

stations of the system are that aperture size be at least 30 feet in

diameter and that the overall system noise temperature be no greater than

150°K. These ground station parameters are similar to those being used

for the HS-303A system, except that the system noise temperature is lower

in HS-303A. The low cost ground station for receipt of one teletype

channel requires an aperture size of only 6 feet and an overall system

noise temperature of 600°K.

12



The corresponding ground-to-spacecraft communications parameters were

chosen as a minimum of 3.3 kw transmitter power in conjunction with a 30

foot antenna aperture. The spacecraft receiving system was assumed to have
a noise figure of 6 db.

The above system, as sized after making the frequency and modulation

method assumptions, results in the achievement of at least a 13 channel

simplex TDM communications, one teletype channel for use from master

station to s_---!! receiving t_,=1 system, plus e _me_n_ by which the

scanner data is transmitted to all stations in the system with 30 foot

antenna apertures. It is to be noted that all of the operational ground-

to-spacecraft and spacecraft-to-ground frequencies for this system are

placed in the same general bands. Thus, once the spacecraft is placed on

station, only frequencies in the 7.2 and 1.7 GHz bands will be used. A

136 MHz telemetry backup and prime tracking capability is supplied in the

spacecraft, but is not implemented at any of the SOMS ground stations,

since its primary purpose is to serve as a means of STADAN tracking during

the injection phase of the mission.

Simplified link calculations for this system are given in Table 2.

13



TABLE 2 - Link Calculations

Transmitted Frequency(MHz)

Transmitted Power (watts)

Transmitted Power (dbw)

Net Xmit. Ant. Gain (db)

Path Loss (@ 7.5 °

elevation) (db)

Misc. Losses (db)

Receiving Antenna Gain (db)

Up Link Down Link

Conunun. Con_nand Commun. Commun. Scanner Beacon

7233.48 7225.00 1695.00 1693.60 1697.00 1691.00

3.3kw 8.6 8.6 2.0 0.120

35.21 9.34 9.34 3.0 -9.2

54.15 4.5 4.5 4.5 4.5

-201.86 -189.27 -189.27 -189.27 -189.27

Received Carrier Power (dbw) -116.75

Total Receiver Noise Temp. 870

(°K)

Receiver Noise Bandwidth 7.0

(M_z)

Receiver Noise Power (dbw) -130.75

Predetection Carrier/Noise +14.0

Power (db)

Receiver Noise Density N.A.

(dbw/Hz)

Bit Length (_s) 1.252

Received Bit Energy/Noise N.A.

Density (db)

Post-Detection

Noise Bandwidth

Output Signal/

Noise Power (db)

- Video N.A.

- TTY N.A.

- Sunpulse N.A.

- Video N.A.

TTY N.A.

Sunpulse N.A.

Threshold (db)

Margin (db)

i0.0

4.0

-1.55 -1.45 -1.55 -1.55

41.55 27.55 41.55 41.55

-135.43 -149.43 -141.77 -153.97

150 600 150 150

N.A. .011 .267

N.A. -160.43 -152.57

N.A. +ii.0 +10.8

-206.84 N.A. N.A. -206.84

1.252 6820 N.A.

12.39 N.A. N.A.

N.A. N.A. 60 khz

N.A. 1.0 kHz N.A.

N.A. N.A. 5 kHz

N.A. N.A. 30.0

N.A. 39.2 N.A.

N.A. N.A. 46.0

9.3 7.0 7.0

3.09 4.0 3.8
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D. HS-303A Spacecraft Description

With the previously mentioned exceptions, the spacecraft considered

in this study can be made quite similar to the HS-303A. This spacecraft is

an outgrowth of the smaller spin stabilized synchronous spacecraft used

in the Syncom and Early Bird programs.

The HS-303A spacecraft is made up of a 56 inch cylindrical structure

--_^_ _o _ _-_o _n height. Th_ o,,r_ide of the cylinder is covered by

approximately 12,000 solar cells. Weight of the payload-apogee motor

combination is estimated to be 352 pounds at launch and 160 pounds in

orbit.

The apogee injection motor for the HS-303A is the Aerojet General

Pathfinder solid fuel motor, with a maximum thrust of 3000 pounds and 19.5

seconds burning time.

The control system is an upgraded ,ersion of the Syncom-Early Bird

system, consisting of two independent H202 systems. The HS-303A version

is capable of providing a total velocity increment of 676 feet per second.

Communications requirements of the HS-303A are fulfilled by two redun-

dant quasi,linear repeaters with 125 MHz bandwidth and a 6 db noise figure.

Yne _inai power amplifier of the transmitter consists of four 6 watt

travelling wave tubes. I, 2, 3, or 4 of these tubes may he turned on in

parallel, affording a choice of 6, 12, 18, or 24 watts of transmitter

output. The receiving antenna has a gain of 4 db. The transmitting antenna

has 5 db gain over a beam width of 6° off center in the direction looking

toward the earth. Frequencies for the unmodified HS-303A spacecraft are

in the normal commercial communications bands of 6 and 4 GHz. The ground

to spacecraft frequencies (one for each repeater) are in the 6 GHz band; the

spacecraft to ground frequencies are in the 4 GHz band. i_wo beacons,

one for each repeater, are also in the 4 GHz frequency band.

Telemetry for the HS-303A consists of two PAM/FM/PM encoders carrying

approximately I0 spacecraft data items mlus command verification information.

The spacecraft carries two 1.8 watt, 136 MHz transmitters as one means of

transmitting this information to the ground. The telemetry data can also

be transmitted to the ground via the 4 GHz beacons of the communications

system.
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Commandsfor the HS-303Aare injected into the spacecraft in the 6

GHz band. Each repeater is associated with a command decoder, resulting

in full redundancy for this subsystem.

The Solar cell array (12,240 N- on-P solar cells) supplies over i00

watts of power to the HS-303A immediately after launch, with approximately

i0% degradation estimated to occur over the 5 year lifetime of the space-

craft. Sufficient nickel-cadmium batteries are supplied in the spacecraft

to power three of the travelling wave tubes and both repeaters through

spacecraft eclipses.

In this section, we have described the HS-303A spacecraft. The

actual implementation of an SOMS as a result of this study is given in

the following section, with the unique meteorological and communications

features using concepts described in earlier sections of this report.

16



E. SOMS Spacecraft Description

In addition to the obvious differences from the HS-303A design caused

by the addition of cameras and the choice of the communications system,

certain additional changes have been made to the HS-303A.

The spacecraft structure was found to need space for mounting the

cameras and additional openings in the solar array to accommodate the

viewing areas for the cameras. With these relatively minor changes, the

HS-303A structure can be modified to perform the SOMS mission.

A conservative weight estimate for the SOMS indicates an overall

separated weight of 382 pounds. This weight can be placed into the proper

transfer orbit by the Delta vehicle and is thus considered acceptable for

the mission.

The Aerojet General apogee motor can be used for the SOMS mission

with no changes from the HS-303A configuration.

The power supply subsystem for the SOMS mission carries less solar

cells than the HS-303A, in view of the requirement for camera openings

in the solar array. The number calculated for this study is 11,640 cells,

as opposed to the 12,240 used on the HS-303A. The battery complement for

the SOMS has been reduced from 25 to Ii pounds in view of the decision not

to require SOMS operations during the twice-yearly eclipse periods. This

ground rule allows the usage of 1.75 ampere-hour battery cells in place

of the 4.45 ampere-hour batteries used on the HS-303A. The end result of

the above design modifications is a power supply system w_!ch can support

the camera power requirements plus communications power req,irements with

two travelling wave tubes operating. TLhus, the required 12 watts of space-

craft transmitter power is available. If the use of the 136 MHz for

telemetry and tracking purposes is mimimized after the first few days in

orbit, there should be no problem in supporting the required load for at

least two years after launch.

The spacecraft cameras are additions to the original HS-303A. Their

technical characteristics have been covered previously and will not be

repeated here.

The spacecraft communications system consists of two redundant

transponders required to carry out the airborne requirements of the TDM

communications system. Either one of the transponders (using two of the

four travelling wave tubes) will furnish the required i0 MHz R.F. band-

width with receiver sensitivity and transmitter power sufficient to carry

17



out the needs of the communications link. An additional design constraint
is the requirement that the transponders be coherent in order to be com-
patible with the NASA-GSFCrange and range-rate system. This system will
only be used in the SOMSprogram if it is found that ground station
1690-1700MHzangle and range tracking plus STADAN136 MHztracking do not
allow the generation of sufficient orbital information to supply the
tracking needs of the mission. Since both Early Bird (Intelsat I) and
HS-303A(Intelsat II) are carrying out their missions without the use
of a range-range-rate system, it is not believed necessary for SOMSto
implemen__,irh _ _y_pm _n_A,_,_, _h_ _=n=h_1_..... _33 exist _ thc
transponders to accommodatethe system at SOMSfrequencies, if it should
be proven desirable at a later date.

Relative to the tracking, telemetry, and commandfunctions of the
spacecraft, it is intended that an expansion of HS-303Acapability be
utilized to carry out these items. Tracking during the early portion of
the mission will be accomplished by meansof both 136 and 1691MHzbeacons.
After the spacecraft is on station, only the S-band beacon will be used.
Telemetry will be an expansion of HS-303Acapability in that 15 data inputs
will be required. In addition, five data channels will be required for
commandverification. The existing method of transmitting sun-pulse and
execute data to the ground will be included in the system. The samebasic
transmitting system used on the HS-303Awill be adequate, allowing the
telemetry link to be carried downon the 1691 and/or the 136 MHzfrequen-
cies. It is anticipated that only the 1691MHz frequency will be used for
operations once the spacecraft is placed on station. The 136 MHztelemetry
capability will exist as backup after that time, although it is not antici-
pated that it will be necessary to implement 136 MHzground equipment at
the several ground stations postulated for this study. Any necessary 136 MHz
capability can be implemented more economically at the STADANsites. As in
the telemetry case, the commandrequirements of the SOMScan be accommodated
by expanding the present HS-303Adesign to give the capability of handling
24 commands. Commandwill be at the 7225 MHzfrequency, with ground station
commandcapability being madeavailable only at the master stations of the
system.

The controls system of the SOMSwill be the sameas that planned for
the HS-303Aexcept that a low threshold (0.002° ) nutation damperwill be
added.
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F. SOMS Ground Stations

The several ground stations required for the SOMS mission are of

three basic types.

The first of these is a master station (one required for each space-

craft in orbit), which is capable of sending commands to and receiving

telemetry from the spacecraft, tracking the spacecraft, setting the syn-

chronization fur one 8pacecraft-grouP_ station 8ygtem_ receiving camera

information from the spacecraft, plus transmitting and receiving various

forms of meteorological data via the spacecraft. This type of ground

station is known as CDAT (command-data acquisition and transmit) terminal.

It consists of a 30 foot antenna aperture having 3.3 kw communications and

command transmit capability, with an overall system noise temperature of

150OK.

The second type of terminal comprises most of the hardware required

for the CDAT terminal. Since its capabilitj need not be as great as that

required of the CDAT terminal, its design is simplified wherever possible

in order to minimize costs. This second type of terminal will have the

capability of receiving camera information from the spacecraft, plus

that of transmitting and receiving meteorological data via the spacecraft.

This type of terminal is defined as a DAT (data acquisition and transmit)

terminal. It consists of a 30 foot antenna aperture with 3.3 kw commun-

ications transmit capability, plus an overall system noise temperature of
150°K.

The third type of terminal is capable only of receiving one slow-

speed teletype channel from the spacecraft. This type of terminal is

defined as a DA (data acquisition) terminal. It consists of a 6 foot

antenna aperture and an overall system noise temperature of 600°K.

In laying out the ground terminals for this study, the basic

assumption was made that the system would consist of two spacecraft, located

at 50°W. longitude and 150°W. longitude. To economize on ground station

costs without requiring the use of redundancy in the stations, two master
stations were located in mid-United States, i.e., at Brownsville, Texas.

One of these master stations works with the Atlantic Ocean spacecraft,

and one with the Pacific Ocean spacecraft. In case of failure of one

master station, the other could still work both spacecraft on a time

sharing basis.
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DATground stations to supply the needs of the overseas meteoroIcgical
centers are located for purposes of this study near Offenbach, Germanyand
Brasilia, Brazil for Atlantic coverage. Overseas ground stations are
located in the general vicinity of Melbourne, Australia and Tokyo, Japan for
Pacific coverage. Additional stations could be added, as required, in
each sector as long as the overall voice-type communications capacity of
the system is not exceeded.

The one DAground station considered in this study is located in
Hawaii. Since it is a receive-only station, it does not interfere with
the operation of the several transmitting stations in the system. There-
fore, as manyof this type of station as maybe desired can be added to
the overall system.

If deaired, receive-only ground stations using 30 foot antenna
apertures and 150°Ksystem noise temperature can be used at locations

such as Hawaii in place of the austere DA station mentioned above. This

type of station would essentially be a DAT station without transmit

capability. Its cost would be slightly less than that of a full DAT

station; its cost and receiving capability would naturally be greater than

that of the DA station (using Hawaii as an example) covered in this study.

The approximate locations of the ground stations chosen for purposes

of this study are given in Table 3. The basic capability of the three

types of ground stations is shown by Table 4. Range, azimuth angle, and

elevation angle from each ground station to the appropriate spacecraft is

shown for the assumed spacecraft orbital locations in Table 5. Block

diagrams of the system and three basic ground station terminals (CDAT,

DAT, and DA) are given in Figures 5, 6 and 7.
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TABLE 3 - Station Locations

Brownsville, Texas

Toowoomba, Australia

Juo-Machi, Japan

Honolulu, Hawaii

Brasilia, Brazil

Offenbach, Germany

97.5 ° W, 25.8 ° N

152.2 ° E, 27.7 ° S

140.8 ° E, 36.4 ° N

157.8 ° W, 21.2 ° S

48.0 ° W, 15.8 ° S

8.8 ° E, 50.2 ° N

No provision for Moscow, Nairobi, New Delhi at this time.

Spacecraft at 50 and 150 ° W.
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TABLE 4 - Ground Station Capability

Brownsville, Texas

2 30' antenna - transmit & receive

telemetry - at 1691 MHz

command - at 7225 MHz

Toowoomba, Juo-Machi, Offenbach, Brasilia

i 30' antenna - transmit & receive

No telemetry

No command

Hawaii

6' antenna - receive only

No telemetry

No command
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TABLE 5 - Spacecraft Ground Station Parameters

Spacecraft located at 50° West

Station

Brownsville, Texas

Brasilia, Brazil

Offenbach, W. Germany

Range (km) Azimuth Elevation

38,612 iii. 7° 29.9 °

36,068 '_'_ 7° 71 _0

40,490 245. i ° i0.8 °

Spacecraft located at 150 ° West

Station

Brownsville, Texas

Juo-Machi, Japan

Honolulu, Hawaii

Toowoomba, Australia

Range (kln)

39,029

40,795

36,353

39,564

Azimuth

251.2 °

102.7 °

159.3 °

74.0 °

Elevation

25.4 °

8.0 °

65.3 °

19.9 °
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G. Vehicle

The launch vehicle for the SOMSconsists of the three-stage, thrust-
augmentedModel DSV-3EDelta vehicle. The first stage consists of the
Thor booster with three solid-propellant rocket motors strapped to the
booster. The second stage consists of the "fat tank" configuration with
a 380 secondburning time. The third stage required for the SOMSis the
TE-364, since the FW-4Dthird stage used for HS-303Acannot accomplish the
proposed mission.

The use of the TE-364 in place of the FW-4Dis the only vehicle
change required from the HS-303ADelta configuration to meet SOMSprogram
objectives. This was necessary because the Delta configuration with the
FW-4Dthird stage cannot accommodatethe anticipated SOMSspacecraft/apogee
motor combination. This follows from the fact that the maximumspacecraft/
motor weight which can be boosted into equatorial synchronous orbit by use
of the FW-4Dthird stage is 360 pounds (the latest estimated HS-303A
total weight is 352 pounds). Since the present estimated SOMSspacecraft/
motor weight at third stage separation is 382 pounds, an improved vehicle
combination is required.

The proposed Delta combination, with the TE-364 third stage, is
capable of placing approximately 450 pounds in equatorial synchronous
orbit. Thus, the use of the TE-364 will allow the mission to be achieved
with a large weight margin,approximately 70 pounds. The proposed Delta
combination will have been flight-tested on the RAE(Radio Astronomy
Explorer) during the 3rd calendar quarter of 1967.

The above vehicle configuration will allow mission accomplishment

without the need for any change in the apogee motor presently being used

on the HS-303A. This minimizes the mandatory redesign in converting the

HS-303A spacecraft to the SOMS configuration if it is decided to use this

HS-303A as the nucleus of the SOMS design.
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IV. SPACECRAFT SUBSYSTEMS

A. Meteorological Equipment

The SOMS will use a modified version of the spin-scan cloud scanner

being flown on ATS-B (Figure 8) to obtain daylight cloud-cover pictures.

The SOMS version of this camera scanner will contain a high-resolution

Cassegrain t_leo_op-- .-v _ _h......._ pinhole aperture, followed by a photomultiplier

tube. A video raster generated in the east-west direction by the satellite

spin, and in the north-south direction by mechanical tilting of the telescope's

optical axis in discrete steps from +8.0 to -8.0 degrees, provides earth

coverage from approximately 57.4 ° North latitude to 57.4 ° South latitude

and from the west llmb to the east limb in longitude. This area is covered

by 2000 horizontal (west-to-east) TV lines. Ground resolution of this

system at the subsatellite point is approximately 2.71 nautical miles.

Total scanner weight is estimated as 12 pounds; average power consumption

during normal system operation is 8.8 watts.

A description of the ATS scanner is given in the following para-

graphs. Figure 9 is a diagram of the scanner optical system. A para-

bolic primary mirror with a 5-inch diameter and a 10-inch focal length,

used with a flat secondary mirror, produces an image on the face of an

aperture plate. The 0.0001-inch-diameter aperture provides an angular

resolution of 0.i milliradian. The instantaneous optical fielo-of-view

from synchronous altitude is, therefore, 1.94 nautical miles. Both the

primary and secondary mirrors are made of fused quartz to provide optimum

temperature stability.

Proper focusing of the f/2 parabola is critical; the focal plane

cannot be allcwed to move from the aperture plate. To enable the optical

system to retain focus throughout the expected temperature range, the

basic mirror-mounting surface has been fabricated from Invar, which has

a temperature-expansion coefficient very close to that of quartz.

The lower wavelength response limit of the system is set by a

haze filter with 5-percent transmission at 460 millimicrons and 50-

percent transmission at 485 millimicrons. The long wavelength cutoff

is established by the spectral response of the photomultiplier S-II photo
surface.
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Defocusing of the image from the aperture over the full active area

of the photomultiplier photocathode assures photocathode loadings that will

not affect photocathode sensitivity over the life of the system. Even

the focusing of direct sunlight on the aperture plate will not overload

the photocathode.

The telescope-photomultiplier assembly is mounted to the scanner

frame 5y two Bendix flexural pivots located at the center-of-gravity of

the telescope-photomultiplier assembly (Figure _0).

The mechanical drive mechanism, which is hermetically sealed,

consists of a 90-degree-per-step stepper motor driving a 10.4-to-i

reduction gear which in turn advances a 40 thread-per-inch lead screw.

This simple conversion from rotary to linear motion advances the telescope

in the order of 0.0006 inch per scan line. A bellows configuration at the

movable push rod of the drive mechanism provides a hermetic seal. Two

stainless steel straps transmit linear motion from the scanner frame to

the telescope assembly. Figure ii shows the complete scanner and the

drive configuration.

A command from the ATS spacecraft phased-array control electronics

(PACE) system causes the scanner drive mechanism to advance one step per

spacecraft spin. When the step mechanism has completed the required

2000 steps, s limit switch initiates retrace. Substituting a 17-cps

oscillator output for the PACE input, and reversing the sequence of the

step-motor phase, causes the telescope to return to the 50 ° North

latitude position in approximately 2 minutes. At this point, the opposite

limit switch signals the return to normal north-south stepping in

synchronism with spacecraft rotation.

Scanner electronics include the video amplifiers and buffers, the

photomultiplier high-voltage supply, the command logic and retrace

oscillator, the stepper-motor drive circuits, and the telemetry-condi-

tioning circuits. All these circuits (except the high-voltage supply)

are located on two circuit boards mounted in the frame assembly (Figure

12); one board is mounted parallel to, and the other at rignt angles to,

the telescope optical axis. The high-voltage supply, packaged as a

module, is mounted directly to the scanner frame.

The ATS scanner also contains an adder in the video chain to add

the sun pulse from the ATS sun sensor to the video information. Com-

posite output from the scanner is 1 volt peak-to-peak with the sun pulse
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positive-going and the video negative-going. Output impedance of the video

output stage is 75 ohms. Two such outputs are provided, one having a 10-db

higher output level than the other. The bandwidth of these video outputs

is 200 kHz.

The mounting surface of the ATS scanner is perpendicular to the

telescope optical axis. Unit dimensions are 11 inches by 10 inches by
7.75 inches.

The scanner for SOMS will be a modified version of the ATS scanner.

Table 6 compares system parameters of the ATS scanner with those of the

proposed SGMS scanner.

Only minor changes in the existing scanner are proposed: reduction

in scanner weight; a slight increase in the maximum tilt angle of the

telescope; rotation of the mounting plane by 90 degrees. These changes and

the minor changes in the electronics require initiation of the SOMS version

of the camera at the prototype level instead of at the flight level.

Electrical interfaces between the proposed scanner and the space-
craft are:

i. Power (-24.5v unregulated)

2. Commands

3. Telemetry

4. Sun pulse input

5. Video outputs (two)

Because the spacecraft power bus will supply unregulated -24.5 volts

to the scanner system, a voltage regulator must be included as part of

the scanner electronics. The average power consumed by the system should

be no more than 8.8 watts if a regulator efficiency of 80 percent can be
attained.

The nine ground co,hands required to ensure proper operation of the

system are:
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TABLE 6 - Parameters of ATS and Proposed SOMS Scanners

Parameter

Field-of-view (N-S)

Earth coverage (N-S)

(E -W)

Resolution

instant optical field-

of-view

Telescope step amplitude

Ground resolution

At subpoint

At zenith

Zenith angle

Video bandwidth

System S/N

Power Input

Dynamic range

Gain (video)

Housekeeping - telemetry

Ground commands

Approximate size

Power consumption

Weight

Mounting plane

ATS Scanner

15 degrees

50 ° N lat. - 50 ° Slat.

East to west limb

2000 TV lines

0.i milliradian

0.131 milliradian

2.54 n.m.

5.05 n.m.

58 degrees

200 kHz

30 db minimum

-24.0 v. regulated

104 to i00 ft. lambert

Set

6 outputs

6

8 x I0 x ii in.

6.5 watts

15.5 pounds

Perpendicular to

optical axis

SOMS Scanner

16 degrees

57.4 ° N lat.

(unchanged)

(unchanged)

(unchanged)

57.4 ° Slat.

0.1395 milliradian

2.71 n.m.

6.95 n.m.

65.4 degrees

60 kHz

(unchanged)

-24.5 v. unregulated

(unchanged)

Variable by command

lO outputs

9

(Basically unchanged)

8.8 watts

12 pounds

Parallel to optical

axis
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I. Subsystem power ON - connects unregulated -24.5 v to the subsystem.

2. Subsystem power OFF - disconnects unregulated -24.5 v from the sub-

system.

3. Normal scan mode - causes the camera to scan normally from north

to south and retrace at increased speed.

4. Back-to=back scan mode - ¢_u_es the camera to scan normally in both

directions (no retrace at increased speed).

. South limit override - causes the system to begin scanning from

south to north from the point at which the

telescope was directed when the command is

received.

, North limit override - causes the system to begin scanning from north
to south in the same manner as described for the

previous command.

7. High gain - sets optimum video gain for low scene illumination.

8. Medium gain - sets optimum video gain for medium scene illumination.

9. Low gain - sets optimum video gain for high scene illumination.

Outputs of the five digital and five analog telemetry channels required

for housekeeping purposes are:

I. Scan mode T/M - a digital output indicating normal or back-to-back

scanning.

2. Scan direction T/M - a digital output indicating the direction of scan.

. Telescope temperature

(hot) T/M - an _nalog output indicating the temperature at the

warmest point in the telescope assembly.

. Telescope temperature

(cold) T/M - an analog output indicating the temperature at the coldest

point in the telescope assembly.

5. Power input T/M - an analog output indicating input power level.
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6_ Scanner pressure T/M - a digital output indicating that the

mechanical drive mechanism is retaining

pressure.

, High voltage supply T/M - an analog output indicating output
level from the photomultiplier power

power supply.

8. Video output T/M - an analog output monitoring video output
from the camera.

9. & I0. Video gain T/M - two digital outputs indicating the video gain

setting commanded into the system.

The scanner system will use the sun-pulse from the satellite sun

sensor to advance the mechanical drive mechanism. The sun pulse will also

be added to the video output signal from the scanner. Two identical

composite video outputs will be buffered for isolation, and the output stages

will be made short-circuit-proof. The output amplitude will swing from

+0.2 volt to -i volt with the video information swinging negative from

zero and the sun pulse swinging positive. The output stages will both

have a 75 ohm output impedence. Figure 13 is a block diagram of the

proposed scanner, and Figure 14 shows the composite video output format.

To prevent degradation of system resolution by more than 15 percent

(worst case) from the combined effects of spacecraft spin-axis attitude

errors, the line-to-line (that is, spin-to-spin) orientation error of

the spacecraft spin axis must be held to less than 0.0019 degrees during

scanner operation. The ATS scanner has consistently demonstrated a

capability of stepping across the raster with line-to-line errors of I0

percent of one linewidth or less.

Assuming that the spacecraft position will not drift in the north-

south direction from the equator, a spin-axis attitude-control accuracy of

_+0.7 degrees will assure a minimum north-south coverage from 50 ° North to 50°

South latitude. Assuming no spin-axis attitude error, a spacecraft

position drift of +7.4 degrees (error measured from local vertical at

the equator) will assure the same minimum coverage. If both these errors

are present, the error allowable to each must be determined by trade-off

between attitude-control capabilities, spacecraft-positioning capabilities,

and allowable loss of picture data.

The bench checkout equipment required to support the SOMS scanner

before the subsystem is installed in the spacecraft consists of a spinning

target like that used to ground-test the ATS scanner, a display monitor,
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a commandpanel, and a -24.5 v. power source. The total equipment required
should not fill more than two standard equipment racks. After the scanner
is installed in the spacecraft, the target simulator would continue to be
used, and the bench checkout equipment could be used with the regular
ground station display equipment for debugging and troubleshooting.
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B. Transponder

This section describes the design of the transponder proposed to

fulfill the requirements of this program. Individual components of this

transponder will be similar to those used in programs such as Syncom,

Early Bird, and HS-303A, and the descriptions of the individual blocks will

emphasize these similarities.

Characteristics of the redundant transponders in the SOMS satellite

system are:

i. Receive antenna gain, 2-1/2 db

2. Receive at 7.23348 GHz

3. Receiver noise figure less than 6 db

4. 7-MHz noise bandwidth

5. 12 watts output

6. Communication transmit at 1.695 GHz

7. Scanner and sun sensor transmit at 1.697 GHz

8. Net transmitting antenna g&in, 4-1/2 db at 6 degrees off

center

9. Beacon power output, 120 milliwatts

i0. Beacon frequency, 1.691GHz

Figure 15 is a block diagram of the proposed redundant transponder.

The portion within the dotted line is duplicated for the second transponder

electronics and is not required in the figure.

The total required gain of the transponder may be determined from

the foregoing performance specifications and from the requirement that

the transponder, in the worst case, must operate at an inpu t carrier-to-

noise power ratio of +i0 db. The input noise power is given by:

N t = KTsB
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where: Nt =
K =
Ts =
B =

total input noise power in watts
Boltzmann's constant in joules/°K
system noise temperature in OK
noise bandwidth in Hz

Substituting in the above equation yields an input noise-power
level of -100.8 dbm. Because the carrier level must be at least I0 db
above the noise level, the input signal level must be at least -90.8 dbm.
The required net gain is then 40.8 + 90.8, or 131.6 db. The following
tabulation of componentgains (or losses) shows that the proposed trans-
ponder design is feasible:

Component Gain db

Tunnel diode amplifier (4 each @ 12.5 db/stage)

Hybrid i

I.F. amplifier and limiter

First mixer

Resistive adder

Up converter

Driver traveling-wave tubes (TWT)

Hybrid 2

Hybrid 3

TWT main _saturated)

NET GAIN

+ 50.0

- 3.0

+ 47 6

- 70

- 40

- 60

+ 30 0

- 30

- 30

+ 30.0

+ 131.6 db

Detailed Description

Receiving Antennas: The design of the two receiving antennas will

be based on those for the HS-303A satellite which were designed to operate

at approximately 6300 _Hz and, because of the design technique, may be

easily scaled to the 7250-MHz band.

Receiving antenna 1 is a 3-element cloverleaf array. The polariza-

tion is horizontal linear, perpendicular to the spin axis. The cloverleaf

element is basically a horizontal loop. In the actual antenna, this loop

is approximated by a cluster of four halfwave curved radiating elements

arranged in the pattern of a four-leaf clover and fed from a common coaxial

line. The cloverleaf elements are fabricated by investment casting. The

3-db beamwidth is approximately 36 degrees. Average gain around the spin

axis, measured at the feed-line input at the base of the antenna, is

approximately 2.5 throughout the angular region of _ 6 degrees from

broadside.
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Receiving antenna 2 is a fin-fed slot antenna consisting of four

longitudinal slots on a cylinder fed by fins. The fins are coupled to a

coaxial transmission line that passes through the center of the cylinder.

This type of antenna is used because of the additional structural rigidity

required to support the receiving antenna I. Performance characteristics

of this antenna are similar to those of antenna i.

The requirement for two separate receiving antennas results from the

fact that the noise temperature of the system is set by the tunnel diode

amplifiers (TDA); a single antenna followed by a hybrid feeding thu TDA_'s

would incur a 3-db signal-to-noise ratio loss, which could not be made up

with amplification.

Transmitting Antenna: The design of the proposed signal trans-

mitting antenna is based on the design of the Syncom and HS-303A antennas.

Specifically, the antenna is a five-element collinear slot array with

vertical linear polarization which is parallel to the spin axis, and

therefore orthogonal to the polarization of the receiving antennas. A

tapered distribution of the element excitation is used to broaden the

beam to meet a net gain requirement of 4.5 db at ! 6 degrees from broadside

around the spin axis. This tapering results in a 3-db beamwidth of 18

degrees.

Transponder Electronics: The input signal from the antenna is fed

through a 7.2 GHz filter which rejects spurious signals outside the pass-

band. The signal is then amplified by four cascaded germanium tunnel

diode amplifiers to provide approximately 50 db of gain. Noise figure of

the amplifier is approximately 6.0 db. The design of these amplifiers is

based on the design of the HS-303A amplifiers which attained a noise

figure of 5.5 db at 6.3 GHz.

The output of the last TDA is fed to a hybrid where the signal is

split into two channels. One output is fed to the command receiver and

the other is fed to the communications down-converter through a band-

pass filter. The design of the command receiver is based entirely on that

used in the HS-303A.

The communications signal from the output of the bandpass filter is

fed to a crystal mixer down-converter. The local oscillator operates at

a frequency of 7305.12 MHz, and the communications signal is 7233.48 MHz;

the local oscillator is therefore on the high side of the incoming signal

at a difference frequency of 71.64 MHz.
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The output of the mixer is fed to an I.F. amplifier-limiter

combination. The amplifier, centered at a frequency of 71.64 MHz with a

3-db bandwidth of 7 MHz, has a maximal flat response with the 0.l-db

bandwidth of at least 1.4 MHz. The output of the I.F. amplifier drives

the limiter. Full limiter improvement must be achieved at carrier-to-

noise ratios of I0 db; otherwise, a loss in output signal-to-noise ratio

will result. This requires that the bandwidth of the limiter be large

and that its linear transfer characteristic be extremely small relative to

the drive level.

The limiter is followed by a bandpass filter centered at 71.64 MHz

which suppresses all harmonics generated by the limiter.

The output of the bandpass filter drives one input of the resistive
adder.

The output of the voltage-controlled oscillator (VCO) drives a

cascaded limiter and bandpass filter. The output of the filter drives

one input of the resistive adder. The VCO operates at a nominal fre-

quency of 73.64 MHz. When driven by the sum of the output of the scanner

and the sun sensor, the VCO will deviate from nominal by approximately

150 kHz peak-to-peak. This VCO will be similar to the one being developed

for the scanner experiment on ATS-B; the major revision will be a change

in operating frequency (65.39 MHz) and deviation (I0 MHz).

The remaining input to the resistive adder is the phase-modulated

beacon at a frequency of 67.64 MHz.

The output of the adder is fed to a high-level mixer which is also

driven by the 1623._6-MHz local-oscillator signal. The sun frequencies

(1691.0, 1695.0 and 1697.0 MHz) are filtered by the bandpass filter and

fed to the driver TWT. The high-level mixer will be based on the design

developed for Syncom, since the frequencies are nearly the same (1815 MHz);

however, the power level required for the high-level mixer (0.5 mw) is

less than that required for Syncom (2.5 _w).

A driver TWT is used to receive the output of the bandpass filter

in this design because the drive level required at the input to hybrid 2

to properly drive the output TWT's is approximately 48 milliwatts. Al-

though increasing the saturated gain of these TWT's to 40 db (from the

nominal 30 db) would make it possible to eliminate the driver TWT, increasing

the gain is not proposed because this would require a longer and heavier

slow-wave structure than that required to achieve 30-db gain. However, the

tube developed for the output stage of Syncom is proposed for use as the
driver TWT.
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The output of the driver TWT is fed to hybrid 2, which is also fed

by the output of the driver TWT in the transponder 2 electronics package.

The power is further split in hybrid 3 and hybrid 4 until it is finally

fed to the output TWT's.

Design of the output TWT's (nominal 30-db gain at saturation and

maximum output power of 6 watts at 1695 MHz) is based on that successfully

demonstrated in the Syncom and Early Bird communications satellites.

Overall efficiency of the tubes is 26 percent with a mean time between

failure t__or_ at 90-percent confidence of 46,600 hours, values identical

to those of the Hughes 314-H, 2.5 watt S-band TWT (Syncom tube).

Each output TWT is activated by a unique command. Due to a limita-

tion of prime power, only two TWT's may be operated simultaneously ; however,

any combination of two may be selected thereby increasing the reliability

of the output package.

The output of each TWT drives a bandpass filter centered at 1695 MHz

to suppress harmonically related frequency components generated in the

TWT. The output of each bandpass filter is fed to a ferrite switch similar

to that developed for the HS-303A program.

The output of both switches is summed in the output hybrid connected

to the transmitting antenna. Cable lengths between the T_'s and the

switches are adjusted to compensate for differences in phase shift through
the TWT's.

as he designs of the oscillator multiplier chains are similar, only
the recei_¢_ local-oscillator chain will be described.

The master oscillator and buffer amplifier operate at a frequency

of 67.64 MHz. The buffer-amplifier output feeds a coupler which in turn

feeds a relatively low-level signal to the phase modulator; this signal

when up-converted is the beacon. The other output from the coupler

drives a transistor X3 multiplier whose output is bandpass-filtered at

approximately 203 MHz. The filter output drives the hybrid, where the

signal is split into two paths: the up-converter chain and the receiver

local-oscillator chain. The output of the hybrid to the receiver local-

oscillator drives a step-recovery X9 multiplier whose output feeds a

bandpass filter centered at 1827 MHz. The signal is then fed through two

cascaded X2 varactor multipliers, using isolators for decoupling, and

finally through an isolator to the first mixer. The frequency at this

point is 7305.12 MHz. The design for these circuits has been well

established during the Syncom, Early Bird, and HS-303A programs.
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C. Telemetry and Cormnand

The planned approach to meeting SOMS telemetry and command require-

ments is to rely on hardware used successfully in previous synchronous
satellites.

The trend has been to rely less on VHF command and telemetry

frequencies and to use the SHF bands for these functions. The SOMS concept

follows this trend to the extent of putting both conm_nd and telemetry in

the SHF bands; in addition, the telemetry will also be available in the

VHF band. This makes 136 MHz available for STADAN tracking and enables the

STADAN stations to receive telemetry as necessary. This approach will

limit command capability to that available from the dual station at Browns-

ville, Texas but this should not create any system hardships.

The command subsystem will utilize the two microwave receivers of

the dual transponder and the redundant pulse-tone operated decoders with

associated switching circuitry to accomplish the desired command functions.

The command link will operate at a radio frequency of 7225 MHz. Either

decoder is capable of carrying out any of the spacecraft command functions.

As in the HS-303A, commands are accomplished in three steps:

enable, command, and execute. The enable tone precedes the command pulses

for the purpose of turning on power to the command register. The pulse

train carrying command information is then transmitted and confirmed via the

telemetry link before the command execute signal is sent. After the command

has been executed, the enable tone is again sent to return the command

system to its original state.

The 7225 MHz tunnel-diode amplifier output of the spacecraft trans-

ponder is fed to a hybrid, one output of which goes to the con_and mixer

through a bandpass filter and the other to the communications mixer. The

intermediate signal from the mixer enters another bandpass filter, is

amplified, and enters an LC discriminator.

The command system needs 15 basic commands to handle the SOMF; ad-

ditional command requirements for the scanner will increase the estimated

commands required to more than 15. The 4 x 4 matrix previously sufficient

for co_nand requirements in the HS-303A must therefore be changed to a

5 x 5 matrix, which will complicate the spacecraft hardware in the con_nand

decoder. However, the additional circuity (an additional flip-flop and

set of matrix circuitry) required is quite simple. The system will

therefore require six tones for all foregoing command functions. A total

of 24 comman_will be required to accommodate SOMS requirements:
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Present HS-303Arequirements
Cloud camera requirements

15
9

24

Whenthe execute tone is transmitted to the spacecraft, the output
of the execute detector passes through a switch which has been previously
set to pass the execute pulse by the enabling pulse. This switch supplies
power to the 5 x 5 matrix, which has a unique output for up to 31 states of
the commandregister. The matrix output turns on a driver which carries
out the co_and function. Execution of the commandcontinues only while
the execute tone is present within the system. The telemetry encoder monitors
the status of the cormnandregister whenever the commanddecoder is enabled.
This allows commandstatus to be viewed on the ground by reading the output
of the five telemetered commandlogic channels.

A block diagram of the HS-303Acommandsubsystem as modified for
the SOMSmission is shownin Figure 16. The only required change consists
of the inclusion of a 5 x 5 commandmatrix in place of the 4 x 4 matrix
used for HS-303A.

The telemetry subsystem will operate through both the 136 MHzand
1691MHzcommunications beacon bands. As the 136 MHzcarrier will be
operated for STADANtracking only during the first few days after launch,
spacecraft powercan be conserved by leaving the 136 MHzcarriers off after
the spacecraft is placed on station. Therefore, the prime telemetry modefor
SOMSoperation will be through the communications beacon.

The telemetry subsystem consists of two VHF (136 MHz) transmitters,
two PAM/FMencoders, a turnstile antenna, and two beacon (1691MHz) telemetry
circuits which interface with the spacecraft transponders.

The VHFsystem consists of two 1.8 watt transmitters, either of which
maybe frequency-modulated by one commutatedchannel, the two solar pulses
(psi and psi-2) and the execute tone. In the HS-303Adesign, one commutator
was used to sample twelve telemetry data and/or reference points consecutively.
The frequency of the commutatedchannel is 14.5 kHz. The two solar pulses use
frequencies of 9 and 10.5 kHz. The execute tone frequency is 12 kHz.

The 1691MHzsystem operates from the samePAM/FMencoders as the
136 MHzsystem, with the only difference being that the high-frequency system
works through either one of the spacecraft transponders. As stated above, it
is anticipated that most telemetry will be obtained via the SHFfrequency
once the spacecraft is on station.
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Basic techniques available from previous synchronous satellite

missions can be used in designing the telemetry encoder. The additional

information needs of the video scanners result in a requirement to telemeter

more data. Present estimates indicate a need for 15 data inputs in addition

to the continuing requirement for execute and sun-pulse information; five

main data channels will also be needed for command verification. This com-

pares to the total of 12 data and reference channels used in the HS-303A.

The simplest method of implementing the additional requirements is to add

a subcommutator to one telemetry data channel. The sampling time for the

main data and command verificaLion channels will be in the r_nge of two to

four seconds. The subcommutator sampling time will be approximately 60

seconds. Eleven data information points will be handled by the subcommu-

tator. Anticipated telemetry requirements are:

Frequency Function

9 kHz Psi

10.5 Psi-2

12 Execute

14.5 Data and Calibration

Data and Calibration:

Main commutator - 14.5 kHz

Spacecraft data - 4 channels

Command verification - 5 channels

Calibration - 2 channels

Subcommutator - i channel

Subcommutator

Scanner data

Spacecraft data

- 8 channels

- 3 channels
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D. PowerSupply

The HS-303Aspacecraft power system has been evaluated for the
purpose of converting the spacecraft mission from that of a communication
system to that of an SOMS. The basic idea behind this conversion is to
use off-the-shelf componentsand therefore the original HS-303Aload
demandsare used to represent the meteorological load demandswhenever
similar loads are required.

m_r this +'_'-_ s_uuy, the main solar array must be modified to allow for
the openings necessary for the relocated control jets and the two scanner
systems. The additional openings for the scanners cause a loss of approxi-
mately 14.5%of the optimum peak power available from the original main
solar cell array. It is anticipated that this will result in an available
power of 90 watts for the SOMSat a 90° sun angle. For a 66.5° sun angle,
the available power drops to 77.5 watts. After two years in orbit, the
available power at a 90° sun angle is expected to be 81 watts.

The conculsion drawn from the investigation of the power supply is
that the HS-303Apower system can be modified to support the proposed
meteorological mission if someprecautions are followed during operation.
Whenthe main solar array is at a sun angle of 66.5° , it will not support
both VHFtransmitters as well as one scanner and transponder. Under these
loads, the batteries will have to carry that part of the load demandedby
the VHFtransmitters even when the spacecraft is fully illuminated. Since
the scanner system rather than the solar array determines the attitude of
the spacecraft, the solar array angle of 66.5° must be accepted as a worst
case condition. It is not possible to operate the spacecraft from the solar
array alone. The batteries are necessary to supply the 0.5 amperepulses
demandedby the scanner stepping motor. At a sun angle of 66.5° , the
array will handle a maximumcurrent load of 3.1 amperesbefore the voltage
will drop below that necessary for the load regulators to stay in regulation.
This means that only one VHFtransmitter maybe operated (2.870 amps+
0.215 amps= 3.085 amps) while the rest of the system is operating. After
two years and at a sun angle of 66.5° , the solar array will support a
maximumcurrent load of 2.83 amperesbefore its terminal voltage drops
below that necessary to sustain load regulation. This indicates that the
solar array is not capable of handling the normal spacecraft load of 2.87
ampereswithout the use of batteries; therefore, in order to occasionally
recharge the batteries the numberof pictures taken per day will have to
be decreased. On this basis, the batteries can be recharged.
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Therefore, an operational mode whereby the VHF transmitters are

not used when the scanner and transponder are being operated will allow

successful operation of the proposed system. Since this is feasible after

the spacecraft is on station, it is concluded that the desired operational

results can be accomplished but with reduced operating time towards end-of-

life of the system.

41



E* Controls Equipment

Gas Supply Requirements

The HS-303A is basically a scaled-up Syncom III with the baseplate

diameter and weight approximately doubled. It carries double the amount

of H202 fuel in eight tanks instead of four, and the attitude-control jet

has been moved out to increase the moment arm. The _ V capacity of the

HS-303A is therefore approximately the same as that of Syncom III, some

600 fps, most of this being needed to correct for a 3-sigma error of the

Delta launch vehicle. A reorientation maneuver of 50 degrees expends

only 27 fps of the H202 capacity. Attitude control of the SOMS therefore

requires no modifications of the HS-303A gas supply.

Control System Desisn

The HS-303A is a spin-stabilized cylindrical spacecraft with a

nominal inertial ratio _ = 1.42. It uses a synchronized, pulsed, axial

jet (parallel to the spin axis) to precess the spin axis. Sun sensors,

used in conjunction with ground station processing equipment, control the

jet firing. This system, proven on Syncom and Early Bird, should maintain

the spin-axis attitude of SOMS to within _ 0.5 degrees of the orbit normal.

The only control system modification required for SOMS is the use

of a nutation damper similar to that to be flown on the ATS-B. The SOMS

mission will therefore not cause any appreciable change in the weight and

power requirements of the HS-303A attitude control system.

Nutation Characteristics

The spin-scan cloud scanner will be flight-tested on the ATS space-

craft. A comparison of the nutation characteristics of the ATS and HS-303A

spacecraft will be useful in applying the results of the scanner flight test

to the SOMS mission.

The nutation frequency of ATS is nominally i.i times the spin rate,

whereas that of the HS-303A is nominally 1.42 times the spin rate. On

ATS, the maximum scan-line shift is 0.62 times the cone angle; on HS-303A,

it would be 1.94 times the cone angle. Thus the maximum cone angle allowed

for HS-303A is approximately one-third of the cone angle allowed on ATS.
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F. Structure

The basic structure to be used shall be that of the HS-303A or

equivalent, with scanners added to accomplish the requirements of the

SOMS mission. Specific changes to the original structure are:

Mounts to be added to the spacecraft bulkhead to accommodate the
two scanners.

Openings to be made in the solar array and honeycomb substrate to

furnish windows for the two scanners.

Considering additions to and subtractions from the weight break-

down of the original spacecraft, the weight of SOMS at separation from

the third stage should be approximately 382 pounds. Table 7 is a gross

summary of this weight breakdown.

A study of the spacecraft proposed for the Communications Satellite

Corporation global system shows that scanners could be added to that

structure. Overall weight of this spacecraft with SOMS would be about

75 pounds heavier than the primary configuration, less that, but dangerously

close to the maximum spacecraft-apogee motor weight orbitabie by a Delta

using a TE-364. Although there are alternatives to the use of the HS-303A

structure, modification of the latter spacecraft design is feasible without

any great redesign and offers a large payload weight margin.

43



TABLE 7 - Estimated Weight Breakdown: SOMS

Electronics

Harness

Batteries and solar array

H202 control system

Cameras

Miscellaneous

Structure

Apogee motor case

Final orbit condition

H202 and N 2

Injected condition

Total separated weight:

Injected condition

Propellant

Separated condition

57 pounds

5 "

33

13 "

24 "

8

30 "

25 "

195 "

22 "

217 "

217 "

165 '*

382 "
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V . GROUND STATIONS

A. Introduction

The Synchronous Operational Meteorological Satellite transmits

continuous cloud cover scanner pictures and simultaneously relays medium

and slow speed data. In addition, the spacecraft transmits telemetry

data and receives and acts on commands sent to it. A single master

station will receive the telemetry, command the satellite to maintain

its proper synchronous orbit, provide synchronization for the data

channels, have the capability to transmit and receive on all thirteen

data channels, transmit and receive on the teletype channel, receive the

scanner data from the spacecraft, and retransmit the scanner data as a

facsimile signal on one of the thirteen data channels. This complete

station is called the CDAT; command, data acquisition, and transmit

station.

The CDAT station is the only station concerned with servicing the

spacecraft, all other stations are concerned only with relaying data

and/or obtaining data via the spacecraft. Many types of stations with

varying complexity and data capacity can be visualized ; however, two

types of data stations will be described, besides the CDAT, illustrating

the full range from minimum station to maximum station, (and also

minimum cost to maximum cost). In addition, it should be noted that the

system data frame structure, shown in Figure 3, could be changed without

affecting the spacecraft, to allow reduction in the complexity of the

ground station, or to increase the capacity of the system with an

attendent increase in complexity.

The ground stations described in this section, for use with the

format of Figure 3, _re the DA (data acquisition) stations which receive

teletype only; the OAT (data acquisition and transmit) stations which

receive teletype and receive and transmit on one to thirteen data channels;

and the CDAT, the master station with full capability. The DAT station is

constructed of a main frame with additional channels accou_nodated by

module plug-in; the other stations are fixed. Figure 18 shows the

different station capabilities.

B. DA Station

The block diagram of the DA station is shown in Figure 7. This is

the simplest station and uses a standard six foot dish and mount to

receive teletype only. A preamp and communications receiver tuned to

1.6936 GHz with a bandwidth of II kHz selects the teletype signal only,

since the cou_uunications transmitter is shifted during the teletype

channel time from the 1.695 GHz communications frequency to the 1.6936 GHz

teletype frequency and is then frequency modulated by a subcarrier. The

subcarrier is phase modulated by five teletype bits for each teletype

character at about a I kHz rate, therefore the frequency demodulated
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receiver output is phase demodulated externally into an NRZsignal.
During the period whenno teletype signal is present, wideband noise will
be present at the output of the receiver and will be detected for a squelch
signal. The bit detector clock, as well as the teletype modemclock is
developed from monostable multivibrators for economy. The five detected

bits are shifted into a register and shifted out at teletype rate with

a start and stop added. The regenerated teletype start and bit pulses

are 13.5 milliseconds long and the stop pulse is 19 milliseconds long,

making up the I00 millisecond character rate of a I00 wpm teletype and

the equal i00 millisecond frame rate of the co_m_unications system. A

gate is generated in the last 5 milliseconds of the multivibrator-generated

lO0-millisecond period, and the next frame is allowed to either begin

early or up to 5 milliseconds late depending on detection of the next

transmitted frame. In this manner the average frame rate is kept correct

while individual frames may vary _+5%, (well within acceptable limits).

The output of the shift register with the regenerated code is fed

through a power switch to provide a floating output with a mark resistance

of less than 130 ohms and a space resistance of greater than 2,600

megohms at 260 volts. A standard teletype printer set for i00 wpm

will accept and print the data.
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C. DATStation

The DAT station is the most complex data station. It receives

the teletype, receives and transmits on at least one data channel, and

can be modularly built up to full thirteen channel capability. In

addition, the cloud cover picture can be received directly from the

spacecraft in real time if desired. This is optional, however, since

the picture will be retransmitted as a facsimile picture on one data

channel by the CDAT station, and this reception will be much more

economical than the direct equipment (see Figure 6B).

A 30 foot dish with a parametric amplifier is required to

receive the higher rate data channels and the scanner channel. A standard

receiver with a special phase demodulator and two intermediate frequencies

receives the communications and the teletype channels. The teletype

channel is processed as described in the DA station. The communications

channel is phase demodulated into an NRZ bit stream and fed to a standard

bit synchronizer. A squelch is developed in the receiver which disables

the bit synchronizer and holds its PLL VCO at midfrequency until the

carrier is acquired. After the carrier is acquired, channel sync acqui-

sition is begun. The first 255 bits of each channel are identical

channel sync words. Frame sync is denoted by the first channel sync after

the teletype channel. Channel sync is a pseudo-noise code generated as

a maximal length linear shift register sequence by a register of length

eight. This code allows positive synchronization without excessive

equipment.

When frame sync is first detected, a channel-predictor and

transmit-sequencer are begun. These predict the earliest time to expect

a channel, and also identify the channel. The transmit sequencer provides

the timing to place the transmitted data in the correct time slot. In

addition, the transmit sequencer provides a constant time delay between

the received time slot and the corresponding transmit time slot. This

fixed delay is manually set into each individual station after launch

to account for the different propagation delays for the different

stations. This delay correction will have a vernier which should be

readjusted daily. An automatic measure of the transmitted channel

location will be made by measuring the number of bit periods occurring

between the earliest channel time derived from the frame sync and the

actual channel sync time. If this exceeds a maximum, an alarm will

sound and the operator, by observing a commercial electronic counter

display, can readjust the vernier time delay.
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Data to be transmitted is connected to a channel input and a

switch adjusted to connect the channel to the desired time slot. The

channel is then continuously digitized in an A-to-D converter with

better than 1% accuracy (7 bits). The conversion is at a 7.7 kHz

rate which is fed into a 1024 word buffer. The beginning of memory

load is synchronized to the channel transmit slot, therefore 0.I

second must be allowed whenever a channel is switched; however, as

long as a channel remains switched in, data transmission can start

and stop at will. The memory is unloaded and transmitted in 770 word

bursts with the channel sync automatically sent at the beginning.

The bursts are sent in the selected time slot by the transmit sequencer

which also gates the transmitter on and off. This is repeated at 0.I

second intervals until the channel is switched off.

Data for a desired receiver channel is selected by a front

panel switch which connects the channel predictor for the output desired

to a 1024 word buffer memory. A mark is generated after the following

events have occurred: the channel predictor marks the channel time

slot; the receiver denotes acquisition of the carrier; and channel

sync is detected. From this point, the incoming bit stream is broken

into seven bit words and loaded into a 1024 word buffer. After 64

words are loaded the first time after switching in, the buffer begins

unloading at a 7.7 kHz rate. The 64 word reserve allows for jitter

in the received data frame rate. When 770 words are loaded, the buffer

load stops until the next frame is ready to load the next 770 words.

The unloading remains continuous at 7.7 kHz rate. A D-to-A converter

on the output converts the 7 bit samples back to analog data.

There are 21 spare bits following the channel sync. The first

seven of these bits are used for station call so that a station with

a limited number of output channels can recognize an incoming call even

though that station happens to be monitoring another channel. The

call indication will be panel lights indicating the time slot which the

addressed station is to monitor. In addition, panel lights denoting

unused channels will be provided. The other 14 spare bits can be used

for additional teletype channels or other supervisory duties.

If the station should elect the option of direct scanner picture

output, the dataare ceceived continuously on a separate communications

receiver. The data consist of a burst of video during each spin of

the spacecraft plus a sun p_ise during the interval between bursts.

A relationship between the time of day, the sun pulse, and the edge of

the picture exists and provides a method of synchronizing the picture.

The synchronization and the video processing are described in detail

in a later section. The output picture is processed on an electronic

facsimile which digitizes the data and develops a digital sweep to

provide better than 3000 element resolution. The final picture is on

70 naa film.

48



D. CDAT Station

The CDAT station receives the scanner pictures in real time,

has full transmit and receive capability for all data channels, and

services the spacecraft by reception of telemetry and issuance of
commands (See Figure 6A_.

The reception and processing of the scanner data are the same

as described for the DAT station and are treated in detail in a later

section. The hand!i_ of the data channels is generally the same

as described for the DAT station and will be described in detail

later.

The teletype input can be either from a teletype transmitter,

teletype terminal, or from a paper tape reader upon which the five

level code has been punched. The system stores the five bits of code

and transmits them during the teletype time slot as a five bit burst,

phase modulating a subcarrier which frequency modulates the transmitter.

In addition, the timing signal (derived from the master transmit

sequencer) gates on the transmitter and shifts its frequency to

1.6936 GHz for the teletype transmission period.

The servicing of the spacecraft consists of monitoring telemetry

of power, temperatures, and equipment status; determining the attitude

and spin rate; calculating corrective action required forstation

keeping, and issuing coenands to implement the correction. The

details of this function are described in a later section dealing with

con_and and telemetry.
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No Ground Station Subsystems Description

Video Recording and Display

The proposed video recording and display portion of the ground

equipment is shown in block diagram form in Figure 19. Major components

of this equipment are the composite video separator, the synchronizer,

the photofax display unit, and the video recorder. The inputs required

to this equipment are the demodulated composite video information from

the video receiver and scanner operating mode and scan direction infor-

mation. The system provides the capability to ulsplay the received video

information in real time and/or store the data for off line display.

The following is a brief description of the equipment operation.

A more detailed analysis of each of the system blocks will be presented

later in the text. The composite video which contains scanner video and

sun pulses is operated on by the composite video separator. This separator

separates the sun pulses from the scanner video. Video information from

the composite video separator is connected directly to the photofax display

unit, and the sun pulses are connected to the synchronizer. As shown in

the block diagram the other inputs to the synchronizer are the outputs

from the video-sun angle adjuster and the time of day clock and the scanner

mode and scan direction information. The video-sun angle adjuster provides

the capability to adjust for the delay between the leading edge of the sun

pulse and the photofax line sync pulse that is initially required to present

the useful video information on the photofax display. The time of day clock

provides the input required to automatically adjust this delay as the sun

pulse-to-video delay changes with the time of day. The synchronizer provides

line sync, frame sync, deflection clocking, and scan direction information

to the photofax display unit.

A more detailed analysis of the system unit blocks follows:

Signal Switching Control: This unit supplies the signal and

power switching necessary to provide the capability to (i) display and

record real time data, (2) record only, (3) display only, or (4) display

recorded data.

Composite Video Separator: The composite video consists of

scanner video information which is negative going from zero volts and

sun pulses which are positive going from zero volts. The separator will

consist of an amplifier followed by a phase splitter which is followed in

turn by parallel amplifier-clipper-amplifier chains. A block diagram of

this unit is shown as Figure 20.
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Synchronizer: The synchronizer is the heart of the video display
system. It must supply line sync pulses and deflection clocking to the
photofax with an accuracy of one tenth of a resolution element line-to-line
error and hold the overall raster horizontal skew to i0 resolution elements
or less. It must also provide the frame start or sync pulse to the photofax.
The accuracy required of these various timing outputs dictate the need for a
highly stable and accurate timing source. Since the satellite spin rate can
be expected to vary between 70 and 130 rpm, the synchronizer must also be
capable of automatically adjusting the output clock rate in accordance with
the satellite spin speed.

Satellite spin rate information must be obtained from the satellite
sun sensor output pulse. This sun pulse has a rather noisy nature. The
sun sensors used aboard the ATSseries have a peak-to-peak jitter of
approximately 2 milliradians when installed aboard a satellite spinning
at i00 rpm. A more sophisticated sensor now under development for NASA
will provide a peak-to-peak jitter of approximately 0.4 milliradian under
the sameoperating conditions. Even with this advanced sun sensor, timing
and synchronization pulses having the required accuracy will not be obtainable
on a rotation to rotation basis. The proposed approach to the timing and
synchronization problem is a modified version of the synchronization system
that is under development for use in the ATS-CImage Dissector CameraSystem.
An overall video system error analysis and discussion pertaining to the
determination of the required synchronization system parameters are presented
later in the text.

Frequency Controller. Figure 21 shows a simplified block diagram

of the synchronizer frequency control. In the diagram, f is a frequency

source, M is a fixed radix frequency divider, and R is a pulse counter.

The philosophy of this approach is to divide the source frequency, f,

by a fixed number M during a rotation of the satellite. The number

of M cycles in f over this time interval is then given by the number

accumulated in R. A subsequent division of f by this number accum-

ulated in R then results in M pulses per satellite rotation. For

this relationship to hold exactly, f must be an integer multiple of

M. This requirement provides the basis for error sensing and there-

fore frequency control.

A more complete block diagram of the frequency control portion

of the proposed synchronizer is shown in Figure 22. Here the fre-

quency source becomes a voltage controlled crystal oscillator (VCXO)

and logic is added for error sensing and for establishing the

control voltage for the VCXO. A buffer provides storage of the
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number accumulated in the R counter, and a second frequency divider

and a comparator permit the division of the VCXO frequency by the

stored R count so that M pulses per satellite rotation can be

generated.

Frequency control is accomplished as follows: The M and R

counters are initially cleared by a sun pulse. At the receipt of

the next sun pulse the contents of the M counter is sensed to

determine if the contents differ from zero by a number of counts

in excess of the system error threshold, which is determined primarily

by the jitter on the sun pulse. If the error is greater than this

system threshold, a unit correction to the frequency is made by

applying a pulse to the up-down counter from which the control voltage

for the VCXO is derived. The VCXO frequency will be increased by

the addition (up count) of this pulse if the M counter indicates a

deficiency of VCXO output pulses over the rotation period. Similarly,

the frequency of the VCXO will be lowered by the subtraction (down

count) of this pulse if the M counter indicates an excess of VCXO

output pulses. When a frequency correction is made, the M counter

is immediately cleared, the R count is transferred to the buffer,

and the R counter is then cleared. This procedure continues at each

successive sun pulse until the sensed M count lies within the system

error threshold.

As soon as corrections cease to be necessary on each rotation,

the system automatically begins an integration process by not clearing

the M counter. This counter then acts as an algebraic adder that

accumulates the signed sum of the frequency error and/or sun pulse

jitter error sampled at each sun pulse time. When the accumulated

sum exceeds the system error threshold, a frequency correction is

made as described earlier. This technique produces a digital inte-

gration of error with a time constant determined by the existing

errors. That is, the larger the error, the more quickly corrections

take place.

The selection of the radix for the M counter is based on the

number of scanner resolution elements which from 2000 lines in 16°

is 45,000 elements per satellite rotation. Determination of the

VCXO center frequency is influenced by s_,eral factors. From the

standpoint of logical implementation a relatively low frequency

is desirable, but since VCXO's can be pulled only a few tenths o_

a percent about their center frequency, an extremely high frequency

is indicated. The use of the R counter in the frequency control
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permits the use of a VCXO frequency that also permits the application

of digital techniques. Knowing that f and M must be integrally

related and having chosen the value of M, the VCXO frequency can be

established by selecting a value or range for R. At the lowest

satellite spin rate (70 rpm) the VCXO center frequency will be MxR

max x 7/6 Hz. Taking R max as 300 yields an f equal to 15.75 MHz.

This would then dictate an R min of 161 at a satellite spin rate of

130 rpm. The frequency shift characteristics which the system will

exhibit with the designated values of f, R, and M over the expected

satellite spin speeds is shown as Figure 23. The maximum VCXO

frequency shift is 51.5 kHz. This swiug is well within the pre_ent

state of the art for a VCXO of the required stability (this stability

requirement will be discussed later).

Phasin$ and Control. Although the frequency control portion

of the video display equipment generates a master clock rate which

is M times the satellite spin speed, no attempt is made there to

correlate this clock output with the scanner video information. It

is then the function of the phasing and control circuits to supply

the photofax frame sync, line sync, deflection clock, and scan

direction information in the proper timing relation with the useful

video information. A block diagram of this portion of the synchronizer

is shown as Figure 24. The input requirements to this unit are the M

ppr clock output, the time of day clock output, the sun pulse, the

scanner mode and direction information, and the output from the video-

sun angle delay adjust.

The system operates as follows. The M ppr clock input is

connected in parallel to the X20 frequency multiplier and the + M

counter. This clock input is frequency multiplied in the frequency

multiplier to yield a clocking pulse rate of 20 M ppr. The + M

counter is initially reset when the sun pulse is manually enabled

through the sun pulse gate. This reset should be initiated only

after the frequency controller has been set to the tracking mode.

Once the + M counter has been reset, it provides simulated sun

pulses as long as the frequency controller remains locked. The 20 M

ppr clock frequency is connected directly to a delay counter which

is reset to a predetermined count at the receipt of each simulated

sun pulse (SSP) once the frame start gate has been enabled. The count

that is initially set into the delay counter is that delay which yields

an output pulse from the delay counter just prior to the receipt of

useful scanner video. This delay is set into the time of day

correction counter manually through the use of the delay adjust.
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Once the proper initial count has been set into the time of day
correction counter, the time of day clock continually updates this
delay to compensate for the change in delay between the sun pulse
and the usable video information. The time of day clock and delay
adjust circuits will be discussed later in the text. As mentioned
previously, the contents of the time of day correction counter are
parallel shifted into the delay counter at the occurrence of every
SSP. The output pulse from the delay counter is connected to the
photofax line sync pulse shaper, and also connected in parallel with
the 20 M ppr clock to the coincidence control. This control enables
the 20 M clock output through to the divide by 20 counter when the
delay counter output is received. In this manner the M ppr deflec-
tion clock output to the photofax is properly phased for display of
the video information as time progresses with an accuracy of at
least 1/20 of a resolution element. The frame start and direction
logic provides the frame start enable pulse to the frame start
gate and to the photofax frame sync pulse shaper. This logic block
also supplies direction information to the photofax so that the
printout can be identified as either a forward or backward scanned
picture.

Time of Day Clock and Sun-Video Angle Delay Adjust: Because the
SOMSis earth synchronous and because the synchronization system must use
the sun pulse as a frequency or clock source, the delay between the receipt
of the sun pulse and the usable video information (a function of the angle
between the earth-sun line and the earth-satellite line) changes with the
time of day, and unless corrected for, causes a horizontal skew in the video
display raster. The earth rotates about its axis at the rate of 15 seconds
of arc rotation per second of time. The function of the time of day clock,
in conjunction with the synchronizer, is to compensate for this rotational
error in the display raster in as smooth a manner as is feasibly possible.
The scanner resolution element size is 8 x 10-3 degrees of arc. This is
the angular distance that the satellite movesduring the period of each M
ppr clock cycle. If the time of day clock were set up to give an output
at 8 x 10-3 degree of arc increments of the earth's rotation, the picture
skew due to time of day rotational changes could be eliminated in the manner
described in the previous section, but the line-to-line error could only be
held to + one picture element. In order to reduce the possible line-to-line
error the Mppr clock input to the phasing and control is frequency multi-
plied to 20 M so that corrections can be made to an accuracy of 1/20 of a
resolution element. The clock output for this system is required at earth
rotation increments of 4 x i0-4 degrees of arc. This defines a time of
day clock output at 9.6 Hz. This clock will employ an oven oscillator of
a few hundred kHz with a stability of 2 parts in 108 from which the 9.6 Hz
can be derived.
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The sun-video angle delay adjust simply provides a method by which
the time of day correction counter in the synchronizer can be set to that
numberwhich gives the proper sun-video delay at the initial turn on of
the scanner or display equipment. Figure 25 shows a block diagram of the
unit. The only input required to the adjuster is a I00 kHz clock. This
input should be available from the time of day clock oscillator. A
series of manually actuated one shots will then be used to enable this
clock output to up count or downcount the time of day counter to the
desired initial number.
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VideoSynchronizer Parameter Determination

At this time "state of the art" satellite camera ground

synchronization and display systems are capable of laying down successive

lines on the display raster with a horizontal placement accuracy of at

least one half of one resolution element and of holding the total raster

horizontal skew to 1% or less of the picture width. It will therefore be

the objective of this system to provide a line-to-line error of 30% of

one resolution element or less and a horizontal skew of no more than 1%.

The following is a list of the factors which could cause synchron-

ization or presentation errors:

Synchronizer VCXO stability

Satellite spin rate stability

Sun pulse jitter

Synchronizer VCXO reference voltage stability

Time of day correction accuracy

Satellite attitude control

Satellite position

Photofax display accuracy

Each of the error contributing factors listed above will now

be examined:

Synchronizer VCXO Stability: In order that the VCXO contributes

no significant error on a line-to-line basis, the oscillator stability

requirement will be set as that which yields no more than .01 of one

resolution element error. Since there are 45,000 resolution elements per

satellite spin, that would require

Stability = I/i00 in 45,0_0
i in 4.5 x I0v

2 in 107

This stability requirement is well within the "state of the art" for oven

enclosed crystal controlled oscillators.

Satellite Spin Rate Stability: The Syncom or ATS type satellites

have exhibited a steady state spin decay rate of I rpm in I00 over a period

in excess of one year. As a worst case condition the spin decay rate will

be taken as i rpm in I00 over one year. That is

decay rate = 1 in i00 x 3657x 24 x 60
I in 5._6 x i0

~ 2 in i0°
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This decay rate would yield a line to line error of 0.001 resolution
e lemen t.

Sun Pulse Jitter: For this case, sun pulse jitter is acted upon

by the digital integration of the synchronizer error sensing unit. On a

line-to-line basis the error is therefore a function of the system noise

threshold and also the amplitude of the system unit step correction. In

order to determine the optimum relationship between peak sun pulse jitter,

noise threshold, and correction step amplitude, the operation of the fre-

quency control section of the synchronizer being developed for the ATS-C

Image Dissector Camera System was simulated on a digital computer. Computer

runs were conducted with various noise to threshold relationships. From

the results of these computer simulations it was determined that the

optimum relationship was a synchronizer noise threshold of 1.2 times the

peak noise amplitude for a gaussian noise distribution. During the computer

runs the correction step was set at 0.01 of the noise threshold. For this

system then, the noise threshold in the tracking mode will be set at five

resolution elements (sun pulse jitter p-p is expected to be four resolution

elements) and the unit correction step as 0.05 resolution element. During

the acquisition period the step correction will be increased to one resolu-

tion element to reduce the required lock up time. Once the system is

operating in the tracking mode, the worst case line-to-line error due to

sun pulse jitter will be one unit step correction or 0.05 resolution element.

The error limits will be + 5 resolution elements or 0.5% of the total pic-

ture width.

Synchronizer VCXO Reference Voltage Stability: A unit step correc-

tion of 0.05 resolution element is a VCXO frequency change of 10.3 Hz (at

a spacecraft spin rate of i00 rpm). Since the VCXO will have a frequency

swing of + 51.5 kHz, the D/A converter must be capable of generating

i0,000 steps. If _^_L,=oe _e_o__ are held to an accuracy of 0.2 step ampli-

tude (0.01 resolution element) the D/A converter-reference voltage regulator

combination must be made almost noise free. This task is difficult but not

impossible. (For a 20 volt reference and a voltage driven resistance adder

D/A, the individual steps would have to be two millivolts _ 0.4 millivolt.)

Time of Day Correction Accuracy: As stated previously in the text,

the time of day clock-synchronizer combination will be capable of correcting

the picture skew with an accuracy of 0.05 resolution element on a line-to-line

basis. This capability is a function of the X20 frequency multiplier in

the phasing and control unit. On a long time basis, however, the picture

skew is a function of the long time stability of the time of day clock master

oscillator. In order that the picture skew not be more than two resolution
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elements per frame, the oscillator stability would have to be

J Stability = 2 in 20_0 x 45000
_2 in I0v

An oscillator of this stability is easily obtainable.

Satellite Attitude Control: One of the stipulations of this

program is that the satellite attitude control system hold the scanner

system °_vLo due to undesirable satellite motion (nutation mainly) to

.15 resolution element or less on a line-to-line basis.

Satellite Position: On a short time basis, the satellite has been

worst cased to have a maximum longitudinal deviation of +.5 degrees over

a 24 hour period. The nature of this motion would be a figure 8 over

a 24 hour period. The worst case condition would then be a satellite

position error of .5° in 3 hours or an average error rate of 200 arc

seconds or 7 resolution elements per frame (20 minutes).

Photofax Display Accuracy: The photofax display unit that is

being proposed for use here has an overall linearity of .5% and is

capable of laying down successive lines on the display raster with a

line-to-line accuracy of .I resolution element.

Table 8 lists the system error contributing factors and also the

total system peak and rms errors that can be expected. It can be seen

that the proposed system more than meets the required accuracy on an

overall systems rms error basis.
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TABLE 8 - Video System Error Producin _ Factors

l.

2.

3.

4.

5.

6.

7. Satellite Position

8. Photofax Display

Total System Error

P-P

rms

Error Factor

Synchronizer VCXO stability

Satellite spin rate stability

Sun Pulse Jitter*

Sync VCXO ref. voltage stab.

Time of day correction accur.

Satellite Attitude

line-to-line

(in resolution ele.)

0.01

0.001

0.05

0.01

0.05

0.15

0.0035

0.i0

0.3745

0.194

per frame

(in resolution ele.)

+5
Q

2

7

i0

29

15.9

*Resultant error from digital integration
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Communications System Detailed Description CDAT and DAT

The communications systems in the CDAT and the DAT stations are

almost identical except the DAT may not have all the channels installed.

The operations are similar, however, and the tasks and descriptions

to follow apply to both types of stations.

The tasks to be performed are: synchronization to frame sync

(CDAT synchronizes to a master clock); location and buffering out of

the different received channels; and sampling and transmitting the incoming

channels in the proper time slot. In addition, supervisory codes may be

inserted into the spare word of each channel and these detected continuously

even if the channel is not deliberately monitored.

The system description which follows refers to the block diagram

of Figure 26.

The raw data from the receiver output enters the commercial bit

synchronizer as an NRZ signal. The output of the bit synchronizer is the

reconstituted bit stream and the bit clock. In addition, the bit synchronizer

receives a squelch signal from the receiver when no carrier is present. The

bit clock is held at center until the squelch disappears denoting carrier

lock on.

After system turn on, or an out of sync condition, frame sync must

first be found. This is accomplished by receiving a squelch off signal

from the teletype channel for about three milliseconds which indicates that

the teletype channel has been received and that the next channel sync is

frame sync. (The same 255 bit code is used for frame and channel sync.)

Since the teletype channel is out of band of the communications channel,

the bit sync will not be enabled until approximately 50 bits after the

start of frame sync. At that time, carrier acquisition will occur and the

bit synchronizer will be enabled by the receiver squelch. The first few

bits out of the bit synchronizer will be in error as it acquires bit sync;

however, the sync code is well protected and these errors will not hinder

acquisition of sync or contribute to false sync.

The scheme to find sync is as follows. The first eight bits of the

sequence to be examined are loaded into an eight bit register by the bit

clock. Then the next eight bits are loaded into another register while

the first register is caused to recirculate by the bit clock through

logic identical to the initial code generator. When the second register
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is loaded it also regenerates through identical logic, and the next eight
bits are loaded into a third register. This continues until all seven
registers of the sync detector have been loaded, after which the first
register is interrupted and loaded with the following eight bits and the
process is then repeated. This loading is accomplished by the sync
sequencer and is the first step toward sync detection. The second step
in sync detection is the comparison of the contents of all seven registers
to each other after each load cycle. Whenany five exactly agree, the
sync word has been detected. This can be shownby considering the method
of code generation_ The code generator is an 8 bit shift register in
which a fixed word is loaded to begin the sequence. _--necont_,ts are
then observed and fed back through the logic circuit to control the next
value of the first stage of the register. All other stages are shifted
to the value of the previous stage. The output is taken from the last
stage. This generates a sequence that repeats every 255 bits. Now
any possible consecutive group of 8 bits of the 255 bit sequence is one
state of the generator shift register and since all succeeding states
are determined by the feedback, selecting any eight bit sequenceof
the code, loading it in a register, and then allowing it to recirculate
through the logic will generate the code from that point on. In our
detector, if the first register has a correct eight bit sequence it will
generate the next 8 bits by the time the second register has the next
8 bits loaded into it and so on. When50U_lOf 7 agree, the sync word is
detected with a probability of 2 parts in i0 of false sync.

The third step in sync detection is to detect the last bit of the
code in order to mark the beginning of data. This is done by looking for
the known last eight bits of the code in one of the registers that were
in agreement in the 5 out of 7.

The registers are _ot dumpedafter the 5 out of 7 detection, but
are allowed to recirculate by the bit clock. In this manner, any errors
in the last eight bits of the incoming code do not affect sync. This
of course assumesno loss of bit sync after the 5 out of 7 detection;
however, for this system, with a tight bit-clock-loop, this will be the
case. The sync thus detected is a very positive sync which can ignore
large bursts of errors and is immunefrom false sync generation.

See Di$ital Communications; Golomb, et al; Prentice Hall; 1964

and Advances in Communication Systems; Balakrishnan et al; Academic

Press, 1965
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There is one exception, however, and a special detector is used to eliminate
this Problem. The problem is that if constant zeros should be loaded in
(a slight possibility when searching for sync), the zeros would continue
to regenerate as zeros, and after 40 were loaded, the registers would agree
without being in the generation sequence. Therefore, the all zero state
will be detected and will disable sync detection since it is always an
illegal state in the sync word.

The sync detector contains the seven eight bit registers, the five
out of seven agreement detector, and the exclusive or feed back gates for
each register as well as input gates and the end of sequence detecter.
The sync sequencer contains the counters to load the eight bit groups
cyclically, and the enable gates. The channel sync is detected in exactly
the samemanner, the only difference being the location relative to the
teletype channel.

Coincident with the last bit of frame sync detection, the channel
predictor and transmit sequencer is started. The exact time of each
received channel is uncertain since each will jitter slightly due to the
tolerance in propagation delay compensation. Each station will be
attempting to synchronize to the master station frame sync, however, so
the timing errors are not cumulative and definite windows maybe framed
about expected times relative to the frame sync. The sync predictor does
this, and provides identification signals that can be switched to direct
the desired information to the selected output. Acting in conjunction with
the channel predictor is a transmit sequencer which generates exact times
relative to the frame sync in order to control channel transmission. This
sequence is delayed from the frame sync by a fixed delay manually inserted
at each station to accommodatethe propagation delay. It is madeup of a
coarse selector plus a vernier which adjusts to the nearest bit period.
In addition the channel predictor fixes the earliest time any active trans-
mitting channel of the station should be received. The number of bit periods
between this and actual sync detection are counted and if out of tolerance
(_ 20 + 255) an alarm is sounded so the operator may readjust the transmit
time delay.

The incoming data is handled by the data sequencer. This is a seven
bit counter which upon a mark pulse begins loading seven bit groups into
selected buffer memories (after counting out the three spare words) and
which counts 770 loads and then resets until the next mark pulse.

A typical channel will be received as follows: After the mark
is received, the first three groups of seven bits are shifted through
the data register, and the call detectors are enabled to detect whatever
supervisory information is chosen to be included in these spare words. The
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outputs of the detectors go to front panel lights and the detection is
such tha_ the lights can be lighted even though the particular channel
is not being monitored by the station.

After the spare words are shifted through, the remaining data are
loaded into the buffer memorychosen by the front panel channel selector
switch. The loading is accomplished by bit clock shifting 7 bits at a
time into the register and loading each 7 bits in parallel into the buffer.

The buffer size necessary is 770 words plus twice the possible
number of words transmitted during the channel time uncertainty. The
channel uncertainty words are a maximumof 12; however, since standard
buffers comein 512 and 1024 word sizes, the 1024word size was chosen.
The buffer is unloaded at a constant rate of 7.7 kHz, and this is synchro-
nized so that load and unload pulses are always spaced at least one micro-
second apart (memorycycle time). The 7 bit words unloaded from the buffer
are presented to a D to A converter which reconstructs the analog data
for this channel. Of course, digital information could have been trans-
mitted, in which case the output would comedirectly from the buffer
utilizing the unload pulses for transfer.

The above description showshow one channel is handled; however,
the synchronization is present for all channels once it is obtained for
one channel. Therefore, a station mayhave only one output buffer and
D to A converter which can be switched from channel to channel, or can
expand at any time by simple plug-in of the buffer-converter-switch module.

The other major job of the system is collecting the incoming data
and transmitting it in the proper time slot. The incoming data for each
channel are digitized at a constant 7.7 kHz rate with the synchronized
ground clock. Each channel is loaded into its 1024 word buffer as 7 bit
words, 7 bits per sample. The beginning of the sampling of a channel is
synchronized to the selected time slot in which it is to be transmitted.
Therefore up to 0.i second is necessary before beginning transmission
whenever data are changed from one time slot to another or whendata are
first initiated. Once connected, however, data are accepted continuously.
This synchronization allows the buffer size to be less than two frames
capacity and a 1024 word memoryis used because the size is standard and
it is interchangeable with the receive buffers.

The output of the buffer is parallel transferred to a 7 bit
register and shifted out at the transmit bit rate of 798 kbps for 770
words during the transmit time slot. The transmit sequencer and the
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front panel switch control the shift out and transmit functions. The

sequencer triggers the sync generator which transmi_ one 255 bit cycle

plus the three 7 bit spare words before the 770 word burst is generated.

The transmit sequencer also gates the transmitter on at the beginning

of the sync word and off at the end of the data burst.

One buffer and an A to D converter is necessary for each channel

to be transmitted. However, just as in the receive case, a station may

use one transmit module and switch it from time slot to time slot, or

increase its capability by installing more buffer-converter-switch

modules, as needed.

The teletype transmission, which is normally reserved for the

CDAT station, but could be originated by a DAT station if desired, will

now be described. The teletype time slot is determined by the transmit

sequencer, which in the CDAT station is synchronized to the master

clock. The start of teletype transmission is a character behind the input

to allow a full 5 bit code character to be assembled and sent as a 5 bit

burst during the teletype time slot. The input can be a standard I00

wpm teletype line or a paper tape coded in teletype 5 level code which is

read by the system paper tape reader. At the same time as the transmit

sequencer begins the data readout, the tramitter is gated on to the

7234.88 MHz frequency and the data connected to the teletype modulator,

where the five bits are transmitted for the one teletype character. This

is repeated at 0.i second intervals.
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Telemetry and Command

The primary function of the telemetry and command subsystem is to

control and monitor from the ground the performance of the spacecraft.

Complete capability of monitoring and controlling the spacecraft is provided

only at the master terminal, CDAT.

During the initial transfer orbits, telemetry and command capability

will be provided by a VHF link from the t_acking and data system network.

As the need for a VHF telemetry link disappears after approximately 8

days (or after the predetermined station is reached), no _ telemetry

capability will be provided at the SOMS ground terminal, thereby eliminating

the cost of a _ installation that would include a separate antenna,

pedestal, foundation, a transmitter, power supplies, con_nand encoders,

and associated test equipment. Telemetry and command capability will be

provided by using the higher microwave frequencies which are close to the

communications frequencies.

Figure 27 is a block diagram of the telemetry and command loop.

Major components are the command panel, telemetry panel, synchronous

controller (all located in the operations console), receiver and transmitter.

Command: A command to the spacecraft is accomplished in three

discrete steps; enable, command, and execute.

Execution of a command starts by transmitting, at a frequency of

7225 MHz, an enable tone which applies power to the command resistor and

associated circuitry in the spacecraft. A command pulse train transmitted

and confirmed from the telemetry ensures that the command has entered the

spacecraft register correctly. After confirmation, the execute signal is

sent to the spacecraft, which causes the stored cormnand to be decoded and

executed. After the command has been executed, other commands can be

sent, or the system in the spacecraft can be returned to a passive

state.

Command Panel: The command panel provides the capability to

execute the command sequence previously described. The panel, located

in the Operation Control Console contains all the indicators, switches,

and displays to execute the commands. Display lights on the panel

indicate the command stored, the operating sequence, verification that

the proper command has been received at the spacecraft, and the status of

the command sequence. Switches on the panel allow selection of the desired

command code count, and of any of the five modes of the execute signal.
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The normal execute mode is the pulsed mode, in which an execute tone burst
is sent each time the execute switch is depressed. The controller mode
(manual) is used to fire the control jets in synchronism with the satellite
spin rate; in this mod%an execute signal at a selected angle of spacecraft
rotation and for a controlled duration, is sent on each revolution by
pulses generated from the controller. The controller mode (automatic)
performs a function identical to that of the manual mode, except that the
desired numberof execute signal repeats can be preset from a counter.
Whenthe total numberof verifications equals the number of pulses present
in the counter, the execute signal is gated off and no other signals can
be transmitted. A continous modeallows the execute signal to be sent
as long as the execute switch is depressed. The fifth modeis timed mode,
used to send execute signal for a predetermined duration, using the
counter as previously described.

A key swltch-lock combination prevents any of the three discrete
commandsteps from leaving the commandpanel unless the key is inserted
and the switch actuated.

Telemetr_ : The telemetry is used to monitor on the ground various
spacecraft parameters such as temperature, attitude, spacecraft-control
gas pressure, stored commands,and various voltages throughout the space-
craft. The parameters are encoded and modulated on the microwave beacon
carrier operating at a frequency of 1691MHz.

The telemetry signal is received on the ground through the parabolic
communications antenna into a crystal-controlled double-conversion super-
heterodyne receiver with a phase-locked loop to improve signal detection.

Telemetry Panel: The detected signal from the telemetry receiver is
received at the telemetry panel for further filtering and processing into
information channels. The information channels contain the data needed for
day-to-day operation of the communications system and for monitoring space-
craft parameters on the ground.

The operational data are filtered and detected in separate circuitry
before being received at the commandpanel, the recorder, or the controller.
The data containing the monitored spacecraft parameters, along with the
commandenable and the commandsignal, are processed through a filter centered
at 14.5 kHz and having a bandwidth of 4.2 kHz at the l-db points. The
filtered signal is received at the discriminator where the various information
channels are reconstructed. The output of the discriminator is then recorded
as permanentdata of the spacecraft parameters, or is used to generate gates,
channel synchronization pulses, and channel identification codes for the
day-to-day operation of the system.
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Controller: Oneproblem encountered in station-keeping for a
synchronous satel_ite is to determine the spacecraft attitude and spin
rate, so that the control subsystem can be activated when the control jets

are in position to move the satellite in the proper direction. The

purpose of the synchronous controller is to determine this position within

the required accuracy, and to cause the synchronized jet pulses to fire at

any angle of spacecraft rotation for a controllable length of time.

The major components of tl_ controller are two sun-pulse trackers,

a frequency-interval counter, an oscilloscope, and the digital controller.

The sun-pulse trackers generate pulses for each solar pulse

received, so that the leading edges of the reconstructed pulses are

coincident with the maximum amplitude of the actual sun pulse. The

duration of the reconstructed pulses is i millisecond. Reconstructed

pulses from one sensor are sent to the frequency-lnterval counter where

the satellite spin rate is determined by counting pulses over a period

of time. The attitude of the spacecraft is determined by observing on

the oscilloscope the time de lay between reconstructed pulse i and reconstructed

pulse 2.

In addition to reconstructing the received sun pulses, the sun-pulse

trackers divide the rotation period into 32 equal increments, 11.25 degrees

wide, which are sent in a digital form to the digital controller for

programming the jet-activate time, relative to the position of the jet

and the sun line. The digital controller then automatically generates the

synchronous jet-pulse execute signal according to the spin period determined

from the sun pulse trackers. The start time and the jet-pulse duration

controls are manually adjusted according to information on the spacecraft's

attitude and spin period.

A coarse jet-start angle control allows selection of the jet start

angle relative to the sunline to the nearest 11.25 degrees; a fine start

angle control allows an incremental adjustment between 0 and 11.25 degrees.

A jet-pulse duration control allows adjustment of the firing period of

the selected jet. The output from the digital controller is a synchronous

jet-pulse execute signal sent to the command panel for use at the desired
time.
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Receiving Subsystem

The CDAT receiving subsystem includes two groups of receivers, the

data receivers for con_nunications, scanner and telemetry; and an autotrack-

telemetry receiver which provides the azimuth and elevation error signals

generated from the beacon-carrier signal and the telemetry panel signals.

The three receivers are preceded by an uncooled parametric

amplifier inside the antenna receive/feed structure, which is capable

of simultaneous reception of three modulated RF carriers from the satellite.

The receiving frequencies are 1697 MHz for the scanner data, 1695 for

the operational communications traffic (1693.6 MHz for TTY), and 1691 for

the beacon signal, which provides the telemetry output as well as the

autotrack reference. Mounting the parametric amplifier with the feed

structure will provide an assembly optimized for stable low-noise per-

formance.

The DAT station is the same except there is no autotrack or

telemetry. The antenna is manually aimed. The DA station uses a 6'

dish manually aimed and a single narrow band communications receiver.

System Noise Temperature: For this study, overall system noise

temperature at the communications receiver, frequency-referenced to the

input of the paramp, theoretically will not exceed 150°K with the antenna

pointing at an elevation angle of 7.5 degrees on a clear day (assuming

optimum operation of the uncooled parametric amplifier and minimum cable

losses).

Communications Receiver: The communications receiver is a phase-

locked dual-conversion crystal-controlled system capable of optimizing

the performance in the reception and demodulation of a full _ 90° PSK

signal. Operation of this receiver is conventional. A down-converter

translates the 1697 MHz RF input signals down to I.F. frequency. A

bandpass filter with adjustable characteristics initially sets the band-

width of the respective systems. A coherent phase-lock demodulator and

detector recovers the pulse-code-modulated signal.

The reconstructed pulse-code-modulated signal is baseband amplified

and sent to the bit synchronizer. A squelch signal is developed when loss

of carrier in the 1.695 GHz band occurs. This signal is used to maintain

the bit synchronizer PLL VCO near the bit rate until the next carrier has

been acquired.
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Transmittin$ Subsystem

The transmitting subsystem consists of the components, excluding the

antenna, necessary to establish the RF link between the ground and the

spacecraft at an operational frequency of 7.23348 GHz communications and

7.225 GHz for spacecraft commands.

The 7.225 GHz command transmitter is used only when commanding of

the spacecraft is necessary by the CDAT station. The 7.23348 GHz

comm_unications transmitter of the CDAT station transmits the frame sync

word each frame plus the teletype word. The teletype work is transmitted

by shifting the 7.23348 GHzcenter frequency to 7.23488 GHz for the period

of the teletype.

Operation of this subsystem is conventional. A voltage-controlled

crystal oscillator (VCXO) operating at approximately 70 M_z is the basic

frequency generator of the system. Using a crystal oven to stabilize the

temperature, an overall frequency stability of i part in 10 8 should be easily
achieved.

The balanced biphase modulator will be modulated by the digital-coded

input data. This modulation scheme offers the advantage of high system

efficienty, and results in a double-sideband suppressed-carrier signal being

sent to the satellite.

The output from the klystron driver amplifier will be conservatively

rated to provide sufficient drive to the power amplifier under any condition.

Output frequency of the drive amplifier will be the operational frequency

in the 7200-MHz region. One stage of up-conversion is used to reach this

frequency instead of using the in-line frequency-multiplication scheme.

The power amplifier will use a klystron as the high-power generator

to ensure an output conservatively rated at 5 kw at the output of the wave-

guide flange. The klystron amplifier offers the advantages of optimized

performance, siz_ and weight. If required, the output could be made con-

tinuously adjustable over a lO-db range below the maximum output.

The power amplifier will be mounted on the antenna structure near the

elevation axis to minimize the waveguide necessary between the output and

input of the transmit feed. Amplifier controls will be located on the

operational console, along with fault indicators for indicating faults

occurring within the unit. All other components of the transmitting

subsystem will be mounted, except as noted, in or near the operations
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shelter. The output wavegulde componentswill be pressurized to minimize
the d_nger of arcing due to the high level of RF power. The pressurization
equipment will be mounted at the base of the antenna pedestal along with
gauges to register waveguide pressure.

The heat exchanger will be used to dissipate the heat generated by
the klystron power amplifier. The liquid-to-air heat exchanger will
ensure a maximuminlet coolant temperature of 66°C to the klystron
amplifier, water load, and any liquid-cooled waveguide components. A
liquid-cooled durm_yload will be provided for subsystem testing. Provisions
will be madeto connect the dummyload to the power-amplifier output by controls

..... r..... o,,=L console. Liquid coolant temperatures at the inlet and

outlet, and coolant flow rates to the load will also be monitored at the
console.

Antenna Subsystem

The antenna subsystem is a parabolic reflector and feed system

supported and oriented by an azimuth - elevation (az - el) mount. Of the

two types of feed systems considered, prime focal and Cassegrain, the

Cassegraln feed was selected for a number of reasons: The composite feed

system located at the vertex of the reflector can be integrally assembled

as part of the transmitter and receiver front-end components, minimizing

problems associated with the transmission of high RF power levels and with

waveguide runs, thereby providing higher efflciencies for both transmission

and reception. This configuration also has better accessibility for

maintenance, component interchange, component adjustment, and feed installation.

Reflectors: The primary reflector is a 30-foot paraboloid assembled

from solid aluminum panels. Positive mechanical connections provide

electrical bonding between each panel, and between the panels and support

structure. Major truss sections compatible with the number of solid

aluminum panels used will support the panel structure.

The f/d ratio generally used for this size reflector is approximately

0.4, giving a system focal length of 12.0 feet.

The subreflector will be a 6-foot one-piece hyperboloid surface

supported at the focal point of the system by a quadrapod structure of

tubular spars. The quadrapod spars will be designed and attached through

the reflector skin to a major truss member_to limit any angular deflection

of the subreflector to less than 0.2 milliradian and any linear deflection

to less than 0.9 inch. The subreflector, at focal point, will be located

so that its center lies on one axis of the primary reflector parallel to
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the corresponding primary reflector axis within one milliradian. Deviation
of the subreflector surface from a true hyperbolic curve should not exceed

0.031 inch, and will be measured in the samemanner used for the primary
reflector.

Deviation of the primary reflector surface from the true parabolic
contour should not exceed +0.080 inch. The contour is measuredand set
at a 30-degree elevation angle and checked at the zenith and horizon
positions to determine if the surface is within tolerance throughout the
range of elevation rotation. To minimize heat absorption and prevent a
temperature rise creating differential temperature problems, the assembled
panel surfaces are painted with highly diffusive reflective white paint
to yield a surface with low solar absorptivity and high emissivity in the
infrared region of the spectrum.

_ntenna Feed_: The contribution from the antenna subsystemmust
be mimimized i_ order to keep the system at a practical noise temperature.
This requires an RF feed system capable of maximumillumination of the
aperture and a minimumof spill-over around the Cassegrain subreflector.

The transmitting antenna on the spacecraft is polarized vertical
linear (parallel to the spin axis) and the receiving antennas will be
polarized horizontal linear (perpendicular to the spin axis). The feed
system of the ground-antenna s,lh_,stem should therefore be able to transmit
a circular polarized and receive a linear polarized wave front.

Amongacceptable techniques available to meet the requirements of
the ground-terminal feed system is an array using dielectric rods as the
elements; four of these are located at the corners of a square. A trans-
mit element located in the center of the array allows precise beam-axis
alignment, with maximumcross polarization alignment with respect to the
received signal.

The design of the transmit feed element_which allows transmission of
a circular polarized signal in the 7-GHzband, provides sufficient
illumination of the reflector for a theoretical peak antenna gain of
54 db. At the 3-db points the RFbeamwould be 0.3 degree wide, and 80
percent of the RF energy would theoretically be within the 0.185-degree
points.

The four elements used in the receive feed, which are sensitive to
linear polarization as transmitted from the spacecraft, are all to be
designed to be excited in phase for receiving a linear polarized signal
in the 1.7 GHzfrequency spectrum. With the feeds precisely aligned and
excited, a theoretical peak antennagain _ 41.55 db can be obtained at
the 1.7 GHzfrequency. A simple comparator sumsthe output from the four
elements into a single received signal.
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Polarization Plane Adjustment: The technique used for the transmit

and receive feed provides a simple approach to rotating the plane of

polarization for the operations console. Alignment of the feed polariza-

tion with the incident polarization (which is important to optimize the

reception of the signal from the spacecraft) is accomplished by mechanically

rotating a half-wave polarized section mounted in-line with each feed element.

The adjustment can be calibrated so that the readout at the console will be

accurate to a maximum of 1 degree. The advantage of this technique of

polarization adjustment is that polarization can be tracked continuously

without losing polarization sensing at one limit.

Antenna Tracking and Positioning: The problem of tracking an

almost stationary spacecraft and of positioning the antenna is not critical

or acute. The cheapest and simplest solution is to manually position and

track the spacecraft by means of signal-level indications derived from the

receiver AGC voltage. This method will be used for all but the CDAT stations.

For the CDAT stations, a simple autotrack capability will be provided

for positioning and holding the antenna to within + 0. i degree of the space-
m

craft. A three channel autotrack system will provide the required pointing

accuracy at the lowest possible cost.
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Vl. LAUNCH VEHICLE AND APOGEE MOTOR DESCRIPTION AND ANALYSIS

A. Launch Vehicle

The launch vehicle chosen is the thrust augmented Improved Delta

vehicle, model DSV-3E. The first stage consists of a Thor booster

(DM-21) with three Thiokol TX-33-52 solid propellant rocket motors

equally spaced about its periphery. The Thor has an overall length

of 60.5 feet and a maximum diameter of 8 feet. The Thor utilizes

one main engine and two vernier engines, each of which is gimballed.

The vernier engines are used for roll control during powered flight

and final attitude control for a short period after main engine

cut-off. Liquid oxygen and RP-I are used for propellants and a nominal

thrust of 170,000 pounds is delivered by the main engine at sea level.

The two vernier engines deliver i000 pounds of thrust each.

The second stage vehicle consists of the Aerojet General

Corporation AJ 10-118 E pressure-fed liquid propellant propulsion

system and the guidance compartment structure. This stage is 13.2

feet long with a maximum diameter of 5 feet. The AJ 10-118 E liquid

propulsion system uses the hypergolic propellants, inhibited red

fuming nitric acid and unsymmetrical dimethyl hydrazine. This stage

develops a nominal thrust of 7750 pounds. The thrust chamber assembly

is gimbaled for pitch and yaw control during powered flight. Roll

control during powered and coast flight, pitch and yaw control for

coast flight, and retro capability before third stage ignition are

achieved by a cold gas system mounted on the second stage.

The third stage propulsion system to be used for the Comsat Corp.

HS-303A consists of the United Technology Center FW-4D solid propellant

motor. This motor is 19.6 inches in diameter and has an overall length

of 58.4 inches. The loaded motor has a total weight of 660.5 pounds and

a burnout weight of 52 pounds. It develops a nominal thrust of 5350

pounds for a period of 32.1 seconds at 0 rpm or 5620 pounds for 30.5

seconds at 200 rpm. Stabilization during motor burn is accomplished by

spinning the motor-payload combination prior to 2-3 separation and third

stage ignition.

The vehicle described above has the capability of placing a 360

pound spacecraft into a transfer orbit with apogee at the synchronous

altitude.
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B. ApogeeMotor

The fourth stage of the overall vehicle consists of the payload
and the attached apogee kick motor. The motor being used for the

Comsat Corp. HS-303A satellite was analyzed to determine its payload

limitations. This motor is the \erojet-General Corporation Pathfinder

solid propellant motor. Table 9 presents the performance characteristics

of this motor.

TABLE 9

Pathfinder Motor Performance Data

Total Weight

Propellant Weight

Burn Time

Total Impulse

Specific Impulse

192.7 Ib

165.0 ib

19.5 sec

48,200 Ib-sec

289 ib-sec/ib

Figure 28 presents the velocity increment capability of the

Pathfinder motor as a function of total initial spacecraft weight.

In placing a spacecraft into a transfer ellipse having an apogee

near the synchronous altitude, the first two stages of the launch

vehicle are used to place the spacecraft-third stage combination into

a low altitude circular orbit (100-200 n. miles). The third stage is

fired when the spacecraft-third stage combination crosses the equator,

thus injecting the spacecraft into a transfer ellipse, the apogee
altitude of which is near the synchronous altitude. The maximum circular

orbit capability of the first two stages of the DSV-3E Delta vehicle is

184 n. miles, i.e., this is the maximum circular orbit altitude at

which the third stage-payload combination can be injected. Looking at

Figure 29 one sees that for a perigee altitude of 184 n. miles there

corresponds an apogee altitude of 1250 n. miles above the synchronous

altitude and an apogee kick motor velocity increment requirement of

5815 feet/second. Using a velocity increment of 5815 feet/second, one

finds from Figure 28 that the maximum payload that can be adequately

handled by the Pathfinder motor is 355 pounds. This means that if a

spacecraft having a total initial weight greater than 355 pounds is to

be injected into a synchronous orbit, one must use either a higher

performance launch vehicle, or a higher performance apogee motor. It
seems that the former alternative would be a better route to follow as

a higher performance apogee motor would probably cause a corresponding

increase in vehicle weight and possibly necessitate the use of a higher

performance launch vehicle.
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If 355 pounds is an inadequate spacecraft weight, a 450 pound
spacecraft in a transfer orbit to the synchronous altitude is
feasible by using the thrust augmentedImproved Delta vehicle with
the Thiokol TE-364 solid propellant motor as third stage propulsion.
The apogeemotor in question could certainly be used if the TE°364
third stage were utilized since the mission could then be achieved by
allowing the launch vehicle to removepart of the transfer orbit inclina-
tion. The removal of the inclination would be achieved by performing
a pitch and yaw maneuverwith the second stage after second stage cut-off,
but prior to third stage separation. This maneuvering is similar to that
used in the launching of SyncomIII. A slight payload penalty would be
paid by such maneuvering, but the remaining capability would still be
more than adequate to achieve a successful mission and allow for space-
craft growth.
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